簡易檢索 / 詳目顯示

研究生: 陳健誼
Iwan - Christanto
論文名稱: A Globally Overlaid Hierarchical P2P-SIP Architecture with Authentication and Route Optimization
A Globally Overlaid Hierarchical P2P-SIP Architecture with Authentication and Route Optimization
指導教授: 馮輝文
Huei-Wen Ferng
口試委員: 葉丙成
Ping-Cheng Yeh
陳秋華
Chyou-hwa Chen
黃依賢
I-Shyan Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 25
外文關鍵詞: IP telephony, global overlay
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • No authentication causes P2P-SIP to suffer from unauthorized access from unauthenticated nodes. For this reason, an architecture employing SIP servers acting as authentication servers, joining, and maintaining the overlay network to form a three-level, i.e., global, local, and user levels, hierarchical overlay network is proposed in this paper. Except the capability of authentication, the proposed architecture achieves global overlay and has the capability of solving the triangular routing problem for the domain-based P2P-SIP architecture to reach route optimization. Finally, our numerical results demonstrate that the proposed architecture can significantly reduce the number of message rates, latency, and the physical hops count as compared to the closest related architectures.


    No authentication causes P2P-SIP to suffer from unauthorized access from unauthenticated nodes. For this reason, an architecture employing SIP servers acting as authentication servers, joining, and maintaining the overlay network to form a three-level, i.e., global, local, and user levels, hierarchical overlay network is proposed in this paper. Except the capability of authentication, the proposed architecture achieves global overlay and has the capability of solving the triangular routing problem for the domain-based P2P-SIP architecture to reach route optimization. Finally, our numerical results demonstrate that the proposed architecture can significantly reduce the number of message rates, latency, and the physical hops count as compared to the closest related architectures.

    Abstract i Contents ii List of Tables iv List of Figures v 1 Introduction 1 2 Preliminaries 4 2.1 Session Initiation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Chord DHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 The Proposed P2P-SIP Architecture 5 3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 Join Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.3 Leave Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.4 Failure Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.5 Gateway Election Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.6 Call Establishment Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.7 Solution to the Triangular Routing Problem Caused by User Mobility . . . . . . . 9 3.7.1 User registration mechanism for mobile UAs . . . . . . . . . . . . . . . . . 9 3.7.2 Leave mechanism for mobile UAs . . . . . . . . . . . . . . . . . . . . . . . . 10 3.7.3 Failure mechanism for mobile UAs . . . . . . . . . . . . . . . . . . . . . . . 11 3.7.4 Call establishment mechanism for mobile UAs . . . . . . . . . . . . . . . . . 11 4 Performance Analysis 13 4.1 Performance Analysis for the Proposed Architecture . . . . . . . . . . . . . . . . . 13 4.2 Performance Analysis for the Flat Architecture . . . . . . . . . . . . . . . . . . . . 14 4.3 Performance Analysis for the TS Architecture . . . . . . . . . . . . . . . . . . . . . 15 5 Numerical Results and Discussions 17 5.1 Arrangement of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.1.1 Parameters for the proposed architecture . . . . . . . . . . . . . . . . . . . 17 5.1.2 Parameters for the flat architecture . . . . . . . . . . . . . . . . . . . . . . . 17 5.1.3 Parameters for the TS architecture . . . . . . . . . . . . . . . . . . . . . . . 18 5.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.2.1 Message rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.2.2 Mean number of hops and latency . . . . . . . . . . . . . . . . . . . . . . . 19 6 Conclusions 22 Bibliography 22

    [1] S. Baset, H. Schulzrinne, E. Shim, and K. Dhara, “Requirements for SIP-based peer-to-peer internet telephony,” Internet Draft, Internet Engineering Task Force, Oct. 2005.
    [2] D. Bryan, B. Lowekamp, and C. Jennings, “SOSIMPLE: A serverless, standards-based, P2P SIP communication system,”in Proc. IEEE AAA-IDEA’05, Mar. 2005.
    [3] D. Bryan, B. Lowekamp, and C. Jennings, “dSIP: A P2P approach to SIP registration and resource location,” Internet Draft, Internet Engineering Task Force, Feb. 2007.
    [4] D. Bryan, B. Lowekamp, and M. Zangrilli, “The design of a versatile, secure P2PSIP communications architecture for the public internet,” in Proc. IEEE IPDPS’08, Apr. 2008.
    [5] F. Cao, D. Bryan, and B. Lowekamp, “Providing secure services in peer-to-peer communications networks with centra security servers,” in Proc. IEEE AICT/ICIW’06, Feb. 2006.
    [6] C. M. Cheng, S. L. Tsao, and J. C. Chou, “Unstructured peer-to-peer session initiation protocol for mobile environment,”in Proc. IEEE PIMRC’07, 2007.
    [7] A. Fessi, H. Niedermayer, H. Kinkelin, and G. Carle, “A cooperative SIP infrastructure for highly reliable telecommunication services,” in Proc. ACM IPTCOMM’07, Jul. 2007.
    [8] R. Fielding, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee, “Hypertext transfer protocol – HTTP/1.1,”RFC 2616, Internet Engineering Task Force, Jun. 1999.
    [9] P. Flocchini, A. Nayak, and M. Xie, “Enhancing peer-to-peer systems through redundancy,” IEEE J. Sel. Areas Commun., vol. 5, no. 1, pp. 15–24, Jan. 2007.
    [10] L. Garces-Erice, E. Biersack, P. Felber, K. Ross, and G. Urvoy-Keller, “Hierarchical peer-to-peer systems,” in Lecture Notes in Computer Science. New York: Springer-Verlag, Proc. Euro-Par Parallel Processing, pp. 1230–1239, Jun. 2004.
    [11] B. Goode, “Voice over internet protocol (VoIP),” Proc. IEEE, vol. 90, no. 9, pp. 1495–1517, Sept. 2002.
    [12] M. Handley, V. Jacobson, and C. Perkins, “SDP: Session description protocol,” RFC 4566, Internet Engineering Task Force, Jul. 2006.
    [13] Y. F. Huang, S. Y. Tang, and Y. J. Yip, “A new security architecture for SIP based P2P computer networks,” Journal of Computer Science, Informatics, and Electrical Engineering, vol. 2, no. 1, pp. 1–11, 2008.
    [14] K. Khavari, C. Liang, A. Tizghadam, F. Fadaie, N. Abji, R. Farha, and A. Garcia, “Unstructured peer-to-peer session over IP using SIP,” in Proc. IEEE IPCCC’06, Apr. 2006.
    [15] L. C. Li, J. W. Shi, W. J. Lin, Y. Wang, Y. N. Li, and J. Yang, “Transit-stub architecture for peer-to-peer SIP,” in Proc. IEEE EUROMICRO SEAA’07, Sep. 2007.
    [16] H. Lu, M. Krishnaswamy, L. Conroy, S. Bellovin, F. Burg, A. DeSimone, K. Tewani, P. Davidson, H. Schulzrinne,and K. Vishwanathan, “Toward the PSTN/internet inter-networking–pre-PINT implementations,” Internet Draft, Internet Engineering Task Force, Nov. 1998.
    [17] H. Y. Ma, B. M. Xu, H. X. Wan, and C. Y. Li, “A hierarchical P2P architecture for SIP communication,” in Proc. IEEE NGMAST’07, 2007.
    [18] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information system based on the XOR metric,” in Lecture Notes in Computer Science. New York: Springer-Verlag, Proc. Peer-to-Peer Systems, pp. 53–65, Jan. 2002.
    [19] R. Morselli, B. Bhattacharjee, M. Marsh, and A. Srinivasan, “Efficient lookup on unstructured topologies,” IEEE J. Sel. Areas Commun., vol. 15, no. 1, pp. 62–72, Jan. 2007.
    [20] S. Narayanan and G. Daley, “An architecture for peer-to-peer session initiation protocol (P2P SIP),” Internet Draft, Internet Engineering Task Force, Feb. 2006.
    [21] S. Rhea, G. Dennis, R. Timothy, and K. John, “Handling churn in a DHT,” in Proc. of the USENIX Annual Technical Conference, Jun. 2004.
    [22] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and E. Schooler, “SIP:Session initiation protocol,” RFC 3261, Internet Engineering Task Force, Jun. 2002.
    [23] J. Shi, Y. Ji, H. Zhang, and Y. Li, “Hierarchical P2P-SIP architecture,” Internet Draft, Internet Engineering Task Force, Aug. 2006.
    [24] K. Singh and H. Schulzrinne, “Peer-to-peer internet telephony using SIP,” in Proc. ACM NOSSDAV’05, Jun. 2005.
    [25] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishan, “Chord: A scalable peer-to-peer lookup service for internet applications,” in Proc. ACM SIGCOMM’01, Aug. 2001.
    [26] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan, “Service location protocol,” RFC 2165, Internet Engineering Task Force, Jun. 1997.
    [27] L. Veltri, “A kademlia-based DHT for resource lookup in P2PSIP,” Internet Draft, Internet Engineering Task Force, Oct. 2007.
    [28] D. Willis and B. Hoeneisen, “Session initiation protocol (SIP) extension header field for service route discovery during registration,” RFC 3608, Internet Engineering Task Force, Oct. 2003.
    [29] Y. Wu, “SSCS: A serverless SIP-based communication system,” in Proc. IEEE GLOBECOM’07, 2007.
    [30] M. Zangrilli and D. Bryan, “A bamboo-based DHT for resource lookup in P2PSIP,” Internet Draft, Internet Engineering Task Force, Feb. 2007.
    [31] M. Zangrilli and D. Bryan, “A chord-based DHT for resource lookup in P2PSIP,” Internet Draft, Internet Engineering Task Force, Feb. 2007.
    [32] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowics, “Tapestry: A resilient global-scale overlay for service deployment,” IEEE J. Sel. Areas Commun., vol. 22, no. 1, pp. 41–53, Jan. 2004.
    [33] Gnutella, http://www.gnutella.com.
    [34] Kazaa, http://www.kazaa.com.
    [35] Skype technologies, http://www.skype.com.

    QR CODE