簡易檢索 / 詳目顯示

研究生: 周萱
Xuan Zhou
論文名稱: 陽極氧化鋁輔助真空壓鑄法製備鉛奈米線及其硫化處理後之光學特性研究
Lead nanowires fabricated by vacuum injection molding process with anodic aluminum oxide template and the analysis of their optical properties after sulfurization treatment
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 陳洋元
Yang-Yuan Chen
陳建仲
Chien-Chon Chen
周宏隆
Hung-Lung Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 80
中文關鍵詞: 硫化鉛奈米線真空液壓鑄造陽極氧化鋁硫化處理
外文關鍵詞: PbS, nanowire, vacuum molding injection process, AAO, sulfurization
相關次數: 點閱:306下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用陽極處理所得之陽極氧化鋁(Anodic Aluminum Oxide, AAO)作為模板,以真空壓鑄之方法製備鉛奈米線陣列,接著透過硫化處理獲得硫化鉛奈米線。利用不同種類之電解液包含硫酸、草酸及磷酸,製備之陽極氧化鋁孔徑可控制於30-300 nm之間,而奈米線之線徑大小取決於陽極氧化鋁模板之奈米孔徑,分別製備線徑約為30、100及300 nm不同尺寸之奈米線進行後續分析。為了探討生長條件對鉛硫化程度之影響,將硫化溫度及時間設為實驗參數。利用場發射掃描式電子顯微鏡觀察陽極氧化鋁模板及奈米線之表面微觀形貌。透過能量色散X射線光譜分析不同硫化條件之奈米線成份比,使用X光繞射儀及穿透式電子顯微鏡鑑定其晶體結構。利用紫外光-可見光/近紅外光分析儀得到奈米線之吸收光譜,結果顯示,由於奈米線受到量子侷限效應,其吸收光譜會隨著線徑增減而位移,故可透過控制硫化鉛奈米線之線徑獲得不同波段之吸收。


In this study, lead sulfide(PbS) nanowires were fabricated with anodic aluminum oxide(AAO) by using vacuum injection molding and sulfurization processes. Using different types of electrolytes including sulfuric acid, oxalic acid and phosphoric acid, the varied anodic aluminum oxide(AAO) pore size can be controlled between 30 nm – 300 nm. The diameter of nanowires depends on the pore size of anodic aluminum oxide(AAO) template, and the nanowires with diameters of approximately 30, 100 and 300 nm were prepared for analyses. In order to investigate the effect of growth conditions for the fabrication of lead sulfide, the correlation between control variables (sulfurizing temperature and time) and the properties of lead sulfide was established. The morphology of AAO templates and nanowires were observed by Field-Emission Scanning Electron Microscope(FE-SEM). The compositions of the nanowires with different sulfurization conditions were analyzed by Energy Dispersive X-ray spectroscopy(EDS) and the crystal structure was identified by X-ray diffractometer(XRD) and Transmission Electron Microscopy(TEM). Furthermore, the absorption spectrum of lead sulfide nanowires were obtained by UV-VIS/NIR spectrophotometer. The results show that absorption peak shift as nanowires diameter change due to the quantum confinement effect.

誌謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 前言 1 第二章 文獻回顧 2 2.1 奈米材料之特性 2 2.2 硫化鉛之基本特性 6 2.2.1 Pb-S熱力學性質 7 2.3 奈米線製備方法 8 2.3.1 模板輔助技術 8 2.3.2 真空液壓鑄造法 9 2.4 陽極氧化鋁 12 2.4.1 陽極氧化鋁之介紹 12 2.4.2 鋁片之前處理 12 2.4.3 陽極氧化鋁生長機制 15 2.4.4 陽極處理參數 17 2.5 文獻回顧總結 20 第三章 實驗工作 21 3.1 實驗流程 21 3.1.1 陽極氧化鋁模板之製備 22 3.1.2 真空壓鑄法 27 3.1.3 硫化處理 28 3.1.4 電性量測之樣品製備 30 3.2 分析儀器 31 3.2.1 場發射掃描式電子顯微鏡 31 3.2.2 能量色散X射線光譜 32 3.2.3 X光繞射儀 33 3.2.4 穿透式電子顯微鏡 34 3.2.5 紫外光-可見光/近紅外光分析儀 35 3.2.6 場發射雙束型聚焦離子束顯微鏡 36 第四章 結果與討論 37 4.1 陽極氧化鋁模板 37 4.2 鉛奈米線陣列 42 4.2.1 微觀形貌分析 42 4.2.2 成份與結構分析 43 4.3 硫化鉛奈米線陣列 44 4.3.1 硫化條件分析 44 4.3.2 微觀形貌及成份分析 47 4.4 硫化鉛奈米線 51 4.4.1 微觀形貌、成份及結構分析 51 4.4.2 光學特性分析 58 4.4.3 電性分析 60 第五章 結論與未來展望 62 5.1 研究結果總結 62 5.2 未來展望 62 參考文獻 63

[1] A. Zhang, H. Kim, J. Cheng, and Y.-H. Lo, "Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors," Nano letters, vol. 10, pp. 2117-2120, 2010.
[2] Y. Wang, T. Yang, J. Lao, R. Zhang, Y. Zhang, M. Zhu, et al., "Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition," Nano Research, vol. 8, pp. 1627-1636, 2015.
[3] S. N. Cha, J. S. Seo, S. M. Kim, H. J. Kim, Y. J. Park, S. W. Kim, et al., "Sound‐driven piezoelectric nanowire‐based nanogenerators," Advanced materials, vol. 22, pp. 4726-4730, 2010.
[4] C. Y. Kuo, C. L. Chan, C. Gau, C.-W. Liu, S. H. Shiau, and J.-H. Ting, "Nano temperature sensor using selective lateral growth of carbon nanotube between electrodes," IEEE Transactions on Nanotechnology, vol. 6, pp. 63-69, 2007.
[5] N. Yamazoe, "Toward innovations of gas sensor technology," Sensors and Actuators B: Chemical, vol. 108, pp. 2-14, 2005.
[6] X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, et al., "Single‐crystalline ZnS nanobelts as ultraviolet‐light sensors," Advanced Materials, vol. 21, pp. 2034-2039, 2009.
[7] J. M. Martin, J. L. Hernández, L. Adell, A. Rodriguez, and F. Lopez, "Arrays of thermally evaporated PbSe infrared photodetectors deposited on Si substrates operating at room temperature," Semiconductor science and technology, vol. 11, p. 1740, 1996.
[8] F. Zhang, Y. Ding, Y. Zhang, X. Zhang, and Z. L. Wang, "Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO–CdS core–shell micro/nanowire," Acs Nano, vol. 6, pp. 9229-9236, 2012.
[9] E. Butanovs, J. Butikova, A. Zolotarjovs, and B. Polyakov, "Towards metal chalcogenide nanowire-based colour-sensitive photodetectors," Optical Materials, vol. 75, pp. 501-507, 2018.
[10] J.-H. Chen, C.-G. Chao, J.-C. Ou, and T.-F. Liu, "Growth and characteristics of lead sulfide nanocrystals produced by the porous alumina membrane," Surface Science, vol. 601, pp. 5142-5147, 2007.
[11] P.-C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A. Chiou, J. Hong, et al., "ZnO nanowires synthesized by vapor trapping CVD method," Chemistry of materials, vol. 16, pp. 5133-5137, 2004.

[12] Q.-G. Fu, H.-J. Li, X.-H. Shi, K.-Z. Li, J. Wei, and Z.-B. Hu, "Synthesis of silicon carbide nanowires by CVD without using a metallic catalyst," Materials Chemistry and Physics, vol. 100, pp. 108-111, 2006.
[13] J. Wang, S. Feng, and D. Yu, "High-quality GaN nanowires synthesized using a CVD approach," Applied Physics A, vol. 75, pp. 691-693, 2002.
[14] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, "Highly ordered nanochannel-array architecture in anodic alumina," Applied Physics Letters, vol. 71, pp. 2770-2772, 1997.
[15] O. Jessensky, F. Müller, and U. Gösele, "Self-organized formation of hexagonal pore arrays in anodic alumina," Applied physics letters, vol. 72, pp. 1173-1175, 1998.
[16] A. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, "Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina," Journal of applied physics, vol. 84, pp. 6023-6026, 1998.
[17] C.-C. Chen, C.-G. Kuo, and C.-G. Chao, "Template assisted fabrication of tin nanospheres by thermal expansion and rapid solidification process," Japanese journal of applied physics, vol. 44, p. 1524, 2005.
[18] B. Deng, S.-L. Zhong, D.-H. Wang, S.-S. Wang, T.-K. Zhang, W.-G. Qu, et al., "High yield synthesis of matchstick-like PbS nanocrystals using mesoporous organosilica as template," Nanoscale, vol. 3, pp. 1014-1021, 2011.
[19] M. Shkir, S. AlFaify, V. Ganesh, and I. Yahia, "Facile one pot synthesis of PbS nanosheets and their characterization," Solid State Sciences, vol. 70, pp. 81-85, 2017.
[20] A. H. Khan, Q. Ji, K. Ariga, U. Thupakula, and S. Acharya, "Size controlled ultranarrow PbS nanorods: spectroscopy and robust stability," Journal of Materials Chemistry, vol. 21, pp. 5671-5676, 2011.
[21] C. Wu, J.-B. Shi, C.-J. Chen, Y.-C. Chen, P.-F. Wu, and J.-Y. Lin, "Correlation between structural and optical properties of 30 nm and 60 nm lead sulfide nanowires," Materials Letters, vol. 61, pp. 4659-4661, 2007.
[22] Q. Dai, Y. Zhang, Y. Wang, M. Z. Hu, B. Zou, Y. Wang, et al., "Size-dependent temperature effects on PbSe nanocrystals," Langmuir, vol. 26, pp. 11435-11440, 2010.
[23] S. Alagha, A. Shik, H. Ruda, I. Saveliev, K. Kavanagh, and S. Watkins, "Space-charge-limited current in nanowires," Journal of Applied Physics, vol. 121, p. 174301, 2017.

[24] Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, "Temperature dependence of electrical and thermal conduction in single silver nanowire," Scientific reports, vol. 5, p. 10718, 2015.
[25] M. V. Kamalakar, "Synthesis, characterization and investigation of electrical transport in metal nanowires and nanotubes," arXiv preprint arXiv:1110.5260, 2011.
[26] N. Anttu, "Absorption of light in a single vertical nanowire and a nanowire array," Nanotechnology, 2018.
[27] S. Iijima, "Helical microtubules of graphitic carbon," nature, vol. 354, p. 56, 1991.
[28] Q. Wan, Q. Li, Y. Chen, T.-H. Wang, X. He, J. Li, et al., "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors," Applied Physics Letters, vol. 84, pp. 3654-3656, 2004.
[29] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, "Hybrid nanorod-polymer solar cells," science, vol. 295, pp. 2425-2427, 2002.
[30] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, et al., "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," nature, vol. 449, p. 885, 2007.
[31] M. Lee, J. Im, B. Y. Lee, S. Myung, J. Kang, L. Huang, et al., "Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires," Nature nanotechnology, vol. 1, p. 66, 2006.
[32] C. H. Lee, D. R. Kim, and X. Zheng, "Fabricating nanowire devices on diverse substrates by simple transfer-printing methods," Proceedings of the National Academy of Sciences, vol. 107, pp. 9950-9955, 2010.
[33] K.-I. Chen, B.-R. Li, and Y.-T. Chen, "Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation," Nano today, vol. 6, pp. 131-154, 2011.
[34] A. P. Alivisatos, "Semiconductor clusters, nanocrystals, and quantum dots," science, vol. 271, pp. 933-937, 1996.
[35] H. T. Grahn, Introduction to semiconductor physics: World Scientific Publishing Company, 1999.
[36] K. E. Sapsford, W. R. Algar, L. Berti, K. B. Gemmill, B. J. Casey, E. Oh, et al., "Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology," Chemical Reviews, vol. 113, pp. 1904-2074, 2013/03/13 2013.
[37] G. A. Somorjai, "From Surface Materials to Surface Technologies," MRS Bulletin, vol. 23, pp. 11-29, 2013.
[38] D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Tong, and S. Lee, Small-Diameter Silicon Nanowire Surfaces vol. 299, 2003.
[39] R. Agrawal, B. Peng, E. E. Gdoutos, and H. D. Espinosa, "Elasticity size effects in ZnO nanowires− a combined experimental-computational approach," Nano letters, vol. 8, pp. 3668-3674, 2008.
[40] X. Lü, W. Z. Shen, and J. H. Chu, Size effect on the thermal conductivity of nanowires vol. 91, 2002.
[41] K. Liu, C.-L. Chien, and P. Searson, Finite-size effects in bismuth nanowires vol. 58, 1998.
[42] W. H. Qi, "Size effect on melting temperature of nanosolids," Physica B: Condensed Matter, vol. 368, pp. 46-50, 2005/11/01/ 2005.
[43] S. I. Sadovnikov and A. I. Gusev, "Structure and properties of PbS films," Journal of Alloys and Compounds, vol. 573, pp. 65-75, 2013/10/05/ 2013.
[44] D. Yu, D. Wang, Z. Meng, J. Lu, and Y. Qian, Synthesis of closed PbS nanowires with regular geometric morphologies vol. 12, 2002.
[45] M. Cheraghizade, R. Yousefi, F. Jamali Sheini, A. Saáedi, and H. Ming, Large-scale and facial fabrication of PbS nanorods by sulfuration of a Pb sheet vol. 21, 2014.
[46] M. W. Chase, S. National Institute of, and Technology, NIST-JANAF thermochemical tables. [Washington, D.C.]; Woodbury, N.Y.: American Chemical Society ; American Institute of Physics for the National Institute of Standards and Technology, 1998.
[47] J. Elias, R. Tena-Zaera, and C. Lévy-Clément, "Electrochemical deposition of ZnO nanowire arrays with tailored dimensions," Journal of Electroanalytical Chemistry, vol. 621, pp. 171-177, 2008.
[48] R. K. Saiki, D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, et al., "Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase," Science, vol. 239, p. 487, 1988.
[49] K. Itaya, S. Sugawara, K. Arai, and S. Saito, Properties of porous anodic aluminum oxide films as membranes vol. 17, 1984.
[50] X. Wang and G.-R. Han, "Fabrication and characterization of anodic aluminum oxide template," Microelectronic Engineering, vol. 66, pp. 166-170, 2003/04/01/ 2003.
[51] Y. Han, S.-H. Hong, and K. Xu, "Structure and in vitro bioactivity of titania-based films by micro-arc oxidation," Surface and Coatings Technology, vol. 168, pp. 249-258, 2003/05/22/ 2003.
[52] B. M. Bang, J.-I. Lee, H. Kim, J. Cho, and S. Park, "High-Performance Macroporous Bulk Silicon Anodes Synthesized by Template-Free Chemical Etching," Advanced Energy Materials, vol. 2, pp. 878-883, 2012.
[53] C.-G. Kuo, H. Chang, L.-R. Hwang, S. Hor, J.-S. Chen, G.-y. Liu, et al., "Fabrication of a Pb-Sn nanowire array gas sensor using a novel high vacuum die casting technique," Electronic Materials Letters, vol. 9, pp. 481-484, July 01 2013.
[54] H. Chen, Y.-M. Yeh, Y. Ti Chen, and Y. Lin Jiang, Influence of growth conditions on hair-like CuS nanowires fabricated by electro-deposition and sulfurization vol. 40, 2014.
[55] X.-P. Shen, A.-H. Yuan, F. Wang, J.-M. Hong, and Z. Xu, "Fabrication of well-aligned CdS nanotubes by CVD-template method," Solid State Communications, vol. 133, pp. 19-22, 2005/01/01/ 2005.
[56] Z. Zhang, J. Y. Ying, and M. S. Dresselhaus, "Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection process," Journal of Materials Research, vol. 13, pp. 1745-1748, 2011.
[57] E. W. Washburn, "The Dynamics of Capillary Flow," Physical Review, vol. 17, pp. 273-283, 03/01/ 1921.
[58] W. C. Say and C. Chon Chen, Formation of Tin Whiskers and Spheres on Anodic Aluminum Oxide Template vol. 46, 2007.
[59] H. Adelkhani, S. Nasoodi, and A. H. Jafari, A study of the Morphology and Optical Properties of Electropolished Aluminum in the Vis-IR region vol. 4, 2009.
[60] T. S. Hahn and A. R. Marder, "Effect of electropolishing variables on the current density-voltage relationship," Metallography, vol. 21, pp. 365-375, 1988/11/01/ 1988.
[61] J. M. Runge, The Metallurgy of Anodizing Aluminum: Springer, 2017.
[62] G. E. Thompson, "Porous anodic alumina: fabrication, characterization and applications," Thin Solid Films, vol. 297, pp. 192-201, 1997/04/01/ 1997.
[63] S. Shingubara, O. Okino, Y. Sayama, H. Sakaue, and T. Takahagi, Ordered Two-Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum vol. 36, 1997.
[64] P. Chowdhury, K. Raghuvaran, M. Krishnan, H. Barshilia, and K. S. Rajam, Effect of process parameters on growth rate and diameter of nano-porous alumina templates vol. 34, 2011.
[65] J. P. O. O'Sullivan and G. C. Wood, The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium vol. 317, 1970.

QR CODE