簡易檢索 / 詳目顯示

研究生: 李宇翔
Yu-Hsiang Li
論文名稱: 應用於表面肌電訊號採集的可擴展規模系統設計與實現
Scalable Architecture for Surface EMG Signal Acquisition System: Design and Implementation
指導教授: 阮聖彰
Shanq-Jang Ruan
口試委員: 林淵翔
Yuan-Hsiang Lin
吳晉賢
Chin-Hsien Wu
蔡坤霖
Kun-Lin Tsai
阮聖彰
Shanq-Jang Ruan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 72
中文關鍵詞: 無線感測器網路肌電圖生物醫學感測器體域網健康監測系統可穿戴系統物聯網MQTT協議
外文關鍵詞: Wireless sensor networks, Electromyography, Biomedical sensors, Body area network, Health monitoring system, Wearable system, Internet of Things (IoT), MQTT protocol
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在醫學、運動科學和人機互動等多元的領域中,專業且實用的表面肌電訊號(Surface Electromyography, sEMG)採集系統扮演關鍵角色,特別是在數據採集階段,具有小巧外觀、模組化設計、且具備擴展性等特點的方案。在本項研究中,我們提出了一套系統解決方案,透過多個搭載表面肌電訊號採集電路的感測器節點,構成一個無線感測器網路,能夠實現同時測量使用者不同部位的肌肉活動,並能應用到同時多人使用的場景。得益於我們的可擴展架構,此架構顯著減少了管理每個節點的複雜度,使各種終端設備能更容易與本系統連接。值得注意的是,本系統除了表面肌電訊號外,更支援整合第三方感應器,從而使得可蒐集的數據種類更多樣。在本論文中,我們首先驗證了單一傳感器節點的數據收集能力,包括類比前端的頻率響應及其在肱二頭肌上的應用。隨後,為了證明了系統的可擴展性,我們使用八個感應器節點收集數據,並且三個終端裝置訂閱所有數據流,中央處理節點的總網路流量僅為74.04kB/s。


Practical surface electromyography (sEMG) acquisition systems play a crucial role in areas such as medicine, sports science, and human-machine interaction, especially in addressing common problems in data acquisition such as size, modularity, and scalability. In this study, we propose a solution through the implementation of a wireless sensor network composed of multiple sensor nodes, capable of simultaneous measurement of muscles at different locations, as well as applications within multi-person scenarios. Benefiting from our scalable architecture, the complexity of managing each node is reduced, facilitating an easier connection with various terminal devices. Notably, this system is adapted for sEMG and supports the integration of third-party sensors. In this thesis, we validated the data collection capability of a single sensor node, including the frequency response in the AFE and its application on the biceps brachii. Subsequently, we tested the system's scalability by experimenting with eight sensors collecting data and three terminal devices subscribing to all data streams, with total network traffic on the central processing node at just 74.04kB/s.

Recommendation Form ................................ i Committee Form ..................................... ii Chinese Abstract ................................... iii Abstract ........................................... iv Acknowledgements ................................... v Table of Contents .................................. vi List of Figures .................................... ix List of Tables ..................................... xi 1 Introduction ..................................... 1 1.1 Design Factors of sEMG Acquisition Systems ..... 1 1.2 Building a Scalable sEMG Acquisition System .... 4 1.3 Organization of This Thesis .................... 6 2 Related Works .................................... 7 2.1 A Brief Introduction to the Electromyography ... 8 2.2 Applications of Surface Electromyography ....... 10 2.3 sEMG Signal Acquisition Systems ................ 11 2.4 Scalable Architecture for Distributed Systems .. 13 3 System Block Design .............................. 15 3.1 System Overview ................................ 16 3.2 sEMG Signal Input Stage ........................ 18 3.3 Instrumentation Amplifier ...................... 20 3.4 Analog Filters ................................. 22 3.5 Signal Digitization ............................ 24 3.6 Power Unit ..................................... 26 4 System Implementation ............................ 28 4.1 Prototype of the Sensor Node ................... 29 4.2 The Central Processing Node .................... 31 4.3 Message Exchange with MQTT Protocol ............ 32 5 Experimental Results ............................. 34 5.1 Unit Testing on a Sensor Node .................. 35 5.2 Scalability Assessment of Sensor Network ....... 39 5.3 Comparison with State-of-the-Art Works ......... 40 6 Conclusions ...................................... 42 References ......................................... 44 Appendix I Schematic Diagram of the Sensor Node .. 53 Appendix II Flowchart of the Sensor Node .......... 55 Appendix III Flowchart of the Receiver End ......... 59

[1] B. Chan, I. Saad, N. Bolong, and K. E. Siew, “A review of surface emg in clinical rehabilitation care systems design,” in 2021 IEEE 19th Student Conference on Research and Development (SCOReD), pp. 371–376, 2021.
[2] M. Simão, N. Mendes, O. Gibaru, and P. Neto, “A review on electromyography decoding and pattern recognition for human-machine interaction,” IEEE Access, vol. 7, pp. 39564–39582, 2019.
[3] Y.-H. Yang, S.-J. Ruan, P.-C. Chen, Y.-T. Liu, and Y.-H. Hsueh, “A low-cost wireless multichannel surface emg acquisition system,” IEEE Consumer Electronics Magazine, vol. 9, no. 5, pp. 14–19, 2020.
[4] B. Rodríguez-Tapia, I. Soto, D. M. Martínez, and N. C. Arballo, “Myoelectric interfaces and related applications: Current state of emg signal processing–a systematic review,” IEEE Access, vol. 8, pp. 7792–7805, 2020.
[5] M. Rana and V. Mittal, “Wearable sensors for real-time kinematics analysis in sports: A review,” IEEE Sensors Journal, vol. 21, no. 2, pp. 1187–1207, 2021.
[6] R. Gravina and G. Fortino, “Wearable body sensor networks: State-of-the-art and research directions,” IEEE Sensors Journal, vol. 21, no. 11, pp. 12511–12522, 2021.
[7] L. Bi, C. Guan, et al., “A review on emg-based motor intention prediction of continuous human upper limb motion for human-robot collaboration,” Biomedical Signal Processing and Control, vol. 51, pp. 113–127, 2019.
[8] S.-H. Liu, C.-B. Lin, Y. Chen, W. Chen, T.-S. Huang, and C.-Y. Hsu, “An emg patch for the real-time monitoring of muscle-fatigue conditions during exercise,” Sensors, vol. 19, no. 14, 2019.
[9] M. Kulesa-Mrowiecka, R. Barański, and M. Kłaczyński, “semg and vibration system monitoring for differential diagnosis in temporomandibular joint disorders,” Sensors, vol. 22, no. 10, 2022.
[10] I. C. Aranda-Valera, J. L. Garrido-Castro, A. Martínez-Galisteo, J. Peña-Amaro, C. González-Navas, A. Cuesta-Vargas, L. Jiménez-Reina, E. Collantes-Estévez, and C. López-Medina, “Patients with axial spondyloarthritis show an altered flexion/ relaxation phenomenon,” Diagnostics, vol. 11, no. 5, 2021.
[11] A. Barsotti, K. Khalaf, and D. Gan, “Muscle fatigue evaluation with emg and acceleration data: a case study,” in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3138–3141, 2020.
[12] A. Vijayvargiya, P. Singh, R. Kumar, and N. Dey, “Hardware implementation for lower limb surface emg measurement and analysis using explainable ai for activity recognition,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–9, 2022.
[13] M. Linderman, M. A. Lebedev, and J. S. Erlichman, “Recognition of handwriting from electromyography,” PLOS ONE, vol. 4, pp. 1–8, 08 2009.
[14] M. Zheng, M. S. Crouch, and M. S. Eggleston, “Surface electromyography as a natural human–machine interface: A review,” IEEE Sensors Journal, vol. 22, no. 10, pp. 9198–9214, 2022.
[15] A. Tripathi, A. P. Prathosh, S. P. Muthukrishnan, and L. Kumar, “Surfmyoair: A surface electromyography-based framework for airwriting recognition,” IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1–12, 2023.
[16] Q. Li, Z. Luo, and J. Zheng, “A new deep anomaly detection-based method for user authentication using multichannel surface emg signals of hand gestures,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–11, 2022.
[17] Y. Sheng, J. Zeng, J. Liu, and H. Liu, “Metric-based muscle synergy consistency for upper limb motor functions,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–11, 2022.
[18] M. Gjoreski, I. Kiprijanovska, S. Stankoski, I. Mavridou, M. J. Broulidakis, H. Gjoreski, and C. Nduka, “Facial emg sensing for monitoring affect using a wearable device,” Scientific Reports, vol. 12, no. 1, p. 16876, 2022.
[19] S. Casaccia, E. J. Sirevaag, M. G. Frank, J. A. O’Sullivan, L. Scalise, and J. W. Rohrbaugh, “Facial muscle activity: Highsensitivity noncontact measurement using laser doppler vibrometry,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–10, 2021.
[20] H. Zhou and G. Alici, “Non-invasive human-machine interface (hmi) systems with hybrid on-body sensors for controlling upper-limb prosthesis: A review,” IEEE Sensors Journal, vol. 22, no. 11, pp. 10292–10307, 2022.
[21] F. Rossi, A. Mongardi, P. M. Ros, M. R. Roch, M. Martina, and D. Demarchi, “Tutorial: A versatile bio-inspired system for processing and transmission of muscular information,” IEEE Sensors Journal, vol. 21, no. 20, pp. 22285–22303, 2021.
[22] Y. Wang, J. Xue, and F. Duan, “Raw semg-based real-time gesture recognition with recurrent neural networks,” in 2021 6th International Conference on Robotics and Automation Engineering (ICRAE), pp. 265–269, 2021.
[23] P.-C. Chen, S.-J. Ruan, and Y.-W. Tu, “Power-management strategies in semg wireless body sensor networks based on computation allocations: A case study for fatigue assessments,” IEEE Access, vol. 8, pp. 181366–181374, 2020.
[24] S. Hussain, E. Shakshuki, and A. Matin, “Agent-based system architecture for wireless sensor networks,” in 20th International Conference on Advanced Information Networking and Applications - Volume 1 (AINA’06), vol. 2, pp. 5 pp.–, 2006.
[25] L. Garcés-Erice, D. Bauer, and P. Scotton, “A flexible and scalable message broker for sensor network integration,” p. 4, 06 2009.
[26] Y.-L. Hsu, H.-C. Chang, and Y.-J. Chiu, “Wearable sport activity classification based on deep convolutional neural network,” IEEE Access, vol. 7, pp. 170199–170212, 2019.
[27] G. L. Cerone, A. Botter, and M. Gazzoni, “A modular, smart, and wearable system for high density semg detection,” IEEE Transactions on Biomedical Engineering, vol. 66, no. 12, pp. 3371–3380, 2019.
[28] W. Song, Q. Han, Z. Lin, N. Yan, D. Luo, Y. Liao, M. Zhang, Z. Wang, X. Xie, A. Wang, Y. Chen, and S. Bai, “Design of a flexible wearable smart semg recorder integrated gradient boosting decision tree based hand gesture recognition,” IEEE Transactions on Biomedical Circuits and Systems, vol. 13, no. 6, pp. 1563–1574, 2019.
[29] L. Zhu, G. Mao, H. Su, Z. Zhou, W. Li, X. Lü, and Z. Wang, “A wearable, high-resolution, and wireless system for multichannel surface electromyography detection,” IEEE Sensors Journal, vol. 21, no. 8, pp. 9937–9948, 2021.
[30] Y.-D. Wu, S.-J. Ruan, and Y.-H. Lee, “An ultra-low power surface emg sensor for wearable biometric and medical applications,” Biosensors, vol. 11, no. 11, 2021.
[31] W. Wang, N. Jiang, L. Teng, M. Sui, C. Li, L. Wang, and G. Li, “Synergy analysis of back muscle activities in patients with adolescent idiopathic scoliosis based on high-density electromyogram,” IEEE Transactions on Biomedical Engineering, vol. 69, no. 6, pp. 2006–2017, 2022.
[32] X. Jiang, X. Liu, J. Fan, X. Ye, C. Dai, E. A. Clancy, D. Farina, and W. Chen, “Enhancing iot security via cancelable hd-semg-based biometric authentication password, encoded by gesture,” IEEE Internet of Things Journal, vol. 8, no. 22, pp. 16535–16547, 2021.
[33] G. L. Cerone, A. Giangrande, M. Ghislieri, M. Gazzoni, H. Piitulainen, and A. Botter, “Design and validation of a wireless body sensor network for integrated eeg and hd-semg acquisitions,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 61–71, 2022.
[34] A. Rojas, A. Farfan, E. Mora, L. I. Minchala, and S. Wong, “Assessing the snr influence in the estimation of the mean frequency of lower limbs semg signals,” IEEE Latin America Transactions, vol. 16, no. 8, pp. 2108–2114, 2018.
[35] J. Joshi, V. Rajapriya, S. Rahul, P. Kumar, S. Polepally, R. Samineni, and D. Kamal Tej, “Performance enhancement and iot based monitoring for smart home,” in 2017 International Conference on Information Networking (ICOIN), pp. 468–473, 2017.
[36] W. Guo, X. Sheng, and X. Zhu, “Assessment of muscle fatigue based on motor unit firing, muscular vibration and oxygenation via hybrid mini-grid semg, mmg, and nirs sensing,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–10, 2022.
[37] A. A. Al-Roubaiey, T. R. Sheltami, A. S. H. Mahmoud, and K. Salah, “Reliable middleware for wireless sensor-actuator networks,” IEEE Access, vol. 7, pp. 14099–14111, 2019.
[38] M. B. I. Raez, M. S. Hussain, and F. Mohd-Yasin, “Techniques of EMG signal analysis: detection, processing, classification and applications,” Biol Proced Online, vol. 8, pp. 11–35, Mar. 2006.
[39] M. U. Khan, R. Hanbali, S. Sharma, K. Iqtidar, S. Aziz, and A. Farooq, “Expert system for diagnosis of multiple neuromuscular disorders using emg signals,” in 2022 14th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS), pp. 1–5, 2022.
[40] Z. Deng, X. Zhang, X. Chen, X. Chen, X. Chen, and E. Yin, “Silent speech recognition based on surface electromyography using a few electrode sites under the guidance from high-density electrode arrays,” IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1–11, 2023.
[41] J. Yongguo, L. Qiang, Q. Changshuai, S. Jian, and L. Qianqian, “Message-oriented middleware: A review,” in 2019 5th International Conference on Big Data Computing and Communications (BIGCOM), pp. 88–97, 2019.
[42] T. Anitha, S. Manimurugan, S. Sridhar, S. Mathupriya, and G. C. P. Latha, “A review on communication protocols of industrial internet of things,” in 2022 2nd International Conference on Computing and Information Technology (ICCIT), pp. 418–423, 2022.
[43] B. Mishra and A. Kertesz, “The use of mqtt in m2m and iot systems: A survey,” IEEE Access, vol. 8, pp. 201071–201086, 2020.
[44] M. J. Zwarts and D. F. Stegeman, “Multichannel surface emg: Basic aspects and clinical utility,” Muscle & Nerve, vol. 28, no. 1, pp. 1–17, 2003.
[45] E. Farago, D. MacIsaac, M. Suk, and A. D. C. Chan, “A review of techniques for surface electromyography signal quality analysis,” IEEE Reviews in Biomedical Engineering, vol. 16, pp. 472–486, 2023.
[46] J. Kilby, K. Prasad, and G. Mawston, “Multi-channel surface electromyography electrodes: A review,” IEEE Sensors Journal, vol. 16, no. 14, pp. 5510–5519, 2016.
[47] V. A. Catacora, F. N. Guerrero, and E. M. Spinelli, “Three-electrode double-differential biopotential amplifier for surface emg measurements,” IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1–8, 2023.
[48] M. Boyer, L. Bouyer, J.-S. Roy, and A. Campeau-Lecours, “Reducing noise, artifacts and interference in single-channel emg signals: A review,” Sensors, vol. 23, no. 6, 2023.
[49] Texas Instruments, Single Supply, Micropower Instrumentation Amplifier, 10 2022.
[50] B. S. Darak and S. M. Hambarde, “A review of techniques for extraction of cardiac artifacts in surface emg signals and results for simulation of ecg-emg mixture signal,” in 2015 International Conference on Pervasive Computing (ICPC), pp. 1–5, 2015.
[51] C. J. De Luca, L. Donald Gilmore, M. Kuznetsov, and S. H. Roy, “Filtering the surface emg signal: Movement artifact and baseline noise contamination,” Journal of Biomechanics, vol. 43, no. 8, pp. 1573–1579, 2010.
[52] Espressif Systems, ESP32-PICO-D4 Datasheet, 04 2022. Available: https://www.espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf, version 2.0.
[53] Espressif Systems, ESP32 Series Datasheet, 07 2023. Available: https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf, version 4.3.
[54] InvenSense Inc., MPU-6000 and MPU-6050 Product Specification, 08 2013. Available: https://product.tdk.com/system/files/dam/doc/product/sensor/mortion-inertial/imu/data_sheet/mpu-6000-datasheet1.pdf, version 3.4.
[55] R. A. Light, “Mosquitto: server and client implementation of the mqtt protocol,” Journal of Open Source Software, vol. 2, no. 13, p. 265, 2017.
[56] A. Banks, E. Briggs, K. Borgendale, and R. Gupta, “MQTT version 5.0,” 3 2019. Latest version: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

無法下載圖示 全文公開日期 2025/08/22 (校內網路)
全文公開日期 2025/08/22 (校外網路)
全文公開日期 2025/08/22 (國家圖書館:臺灣博碩士論文系統)
QR CODE