簡易檢索 / 詳目顯示

研究生: Minh Chau Truong
Minh - Chau Truong
論文名稱: Synthesis Polylactide with Varying Molecular Weights
Synthesis Polylactide with Varying Molecular Weights
指導教授: 游進陽
Chin-Yang Yu
口試委員: 施劭儒
Shao-Ju Shih
堀江正樹
Masaki Horie
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 99
中文關鍵詞: Polylactidering-opening polymerizationstannous octanoate
外文關鍵詞: Polylactide, ring-opening polymerization, stannous octanoate
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

In this thesis, polylactide with various molecular weights and molecular weight distributions were synthesized by solution ring opening polymerization. Molecular weight was controlled by varying the ratio of L-lactide monomer to palmityl alcohol initiator and tin(II) octanoate was used as a catalyst for precise control over molecular weight. Anhydrous toluene was used as a non-reactive solvent to prevent the contamination of catalyst. Besides, we also try to obtain the standard molecular weight of PLA (greater than 100,000 g/mol) to compare with commercial PLAs. Properties of different molecular weights of PLA were characterized by gel permeation chromatography, thermogravimetric analysis, differential scanning calorimety, and 1H NMR spectroscopy.


In this thesis, polylactide with various molecular weights and molecular weight distributions were synthesized by solution ring opening polymerization. Molecular weight was controlled by varying the ratio of L-lactide monomer to palmityl alcohol initiator and tin(II) octanoate was used as a catalyst for precise control over molecular weight. Anhydrous toluene was used as a non-reactive solvent to prevent the contamination of catalyst. Besides, we also try to obtain the standard molecular weight of PLA (greater than 100,000 g/mol) to compare with commercial PLAs. Properties of different molecular weights of PLA were characterized by gel permeation chromatography, thermogravimetric analysis, differential scanning calorimety, and 1H NMR spectroscopy.

Table of contents Acknowledgement i Abstract ii Table of contents iii List of Figures v List of Tables vii Chapter 1. Introduction and Objectives 1 1.1 Motivations 2 1.2 Biodegradable Polymer 3 1.2.1 Definition 3 1.2.2 Classification 4 1.2.3 Biodegradation 6 1.2.4 Applications 7 1.2.4.1 Medical applications 8 1.2.4.2 Agricultural applications 8 1.2.4.3 Packaging applications 9 1.3 Poly(lactic acid) 10 1.3.1 Market Potential of Poly(lactic acid) 10 1.3.2 Advantages & Disadvantages of Poly(lactic acid) 12 1.3.3 Syntheses of Poly(lactic acid) 13 1.3.3.1 Precursors 14 1.3.3.2 Synthesis methods 17 1.3.4 Application of Poly(lactic acid) 26 1.3.4.1 Medical applications 26 1.3.4.2 Packaging Applications 28 1.4 Objectives 31 Chapter 2. Experimental 32 2.1 Materials 33 2.2 Experimental procedures 34 2.2.1 Purification of catalyst 34 2.2.2 Experimental procedures 36 2.2.3 Characterization techniques 38 2.2.3.1 Gel Permeation Chromatography (GPC) 38 2.2.3.2 Hydrogen Nuclear Magnetic Resonance Spectroscopy (1H NMR)…. 39 2.2.3.3 Differential scanning calorimetry (DSC) 41 Chapter 3. Results and Discussion 43 3.1 Overview of Controlling Molecular Weight of PLA 44 3.2 GPC Analysis 45 3.2.1 Synthesis of PLA 7200 45 3.2.2 Synthesis of PLA 14400 47 3.2.3 Synthesis of PLA 21600 49 3.2.4 Synthesis of PLA 72000 50 3.3 1H NMR Analysis 54 3.4 Themal Properties Analysis 56 Chapter 4. Conclusions 59 References 61 Appendix 65

1. Silva. K.M.D, K. Tarverdi, and R. Withnall, Incorporation of wheat starch and coupling agents into poly(lactic acid) to develop biodegradable composite. Plastics, Rubber and Composites, 2011. 40(1): p. 17-24.
2. Luckachan, G. and C.K.S. Pillai, Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives. Journal of Polymers and the Environment, 2011. 19(3): p. 637-676.
3. Nampoothiri, K.M., N.R. Nair, and R.P. John, An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 2010. 101(22): p. 8493-8501.
4. Kaur , P., R. Mehta, D. Berek, and S.N. Upadhyay, Synthesis of Polylactide under Inert Atmosphere and Vacuum. Macromolecular Symposia, 2012. 315(1): p. 106-111.
5. Haynes, D., A.K. Naskar, and A. Singh, Combining Renewable Resource Biopolymers with Fluoropolymers. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 2006. 47(2): p. 31-32.
6. Singh, V.M., D. Koo, G.R. Palmese, and R.A. Cairncross, Synthesis of polylactide with varying molecular weight and aliphatic content: Effect on moisture sorption. Journal of Applied Polymer Science, 2011. 120(5): p. 2543-2549.
7. Averous, L. and E. Pollet, Environmental Silicate Nano-Biocomposites. Springer-Verlag London 2012: p. 13-39.
8. Gupta, A.P. and V. Kumar, New emerging trends in synthetic biodegradable polymers – Polylactide: A critique. European Polymer Journal, 2007. 43(10): p. 4053-4074.
9. Karlsson, S. and A.-C. Albertsson, Biodegradable polymers and environmental interaction. Polymer Engineering & Science, 1998. 38(8): p. 1251-1253.
10. Imre, B. and B. Pukanszky, Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 2013. 49(6): p. 1215-1233.
11. Vilaplana, F., E. Stromberg, and S. Karlsson, Environmental and resource aspects of sustainable biocomposites. Polymer Degradation and Stability, 2010. 95(11): p. 2147-2161.
12. Weber, C.J., Biobased Packaging Materials for the Food Industry: Status and Perspectives. A European Concerted Action 2000.
13. Nair, L.S. and C.T. Laurencin, Biodegradable polymers as biomaterials. Progress in Polymer Science, 2007. 32(8–9): p. 762-798.
14. Hemjinda, S., A. Krzan, E. Chiellini, and S.Miertus, Environmentally Degradable Polymeric Materials and Plastics. Pure and Applied Chemistry, 2007.
15. Katarzyna Leja and G. Lewandowicz, Polymer Biodegradation and Biodegradable Polymers – a Review. Polish J. of Environ. Stud. , 2010. 19(2): p. 255-266.
16. Rudnik, E., Chapter 6 - Biodegradability testing of compostable polymer materials, in Compostable Polymer Materials, E. Rudnik, Editor. 2008, Elsevier: Amsterdam. p. 112-166.
17. Chandra, R. and R. Rustgi, Biodegradable polymers. Progress in Polymer Science, 1998. 23(7): p. 1273-1335.
18. Mitrus, M., A. Wojtowicz, and L. Moscicki, Biodegradable Polymers and Their Practical Utility, in Thermoplastic Starch. 2010, Wiley-VCH Verlag GmbH & Co. KGaA. p. 1-33.
19. Isabelle, V. and T. Lan, Biodegradable Polymers. Materials, 2009. 2(2): p. 307-344.
20. Ren, J., Biodegradable Poly(Lactic Acid): Synthesis, Modification, Processing and Applications. Beijing and Springer-Verlag Berlin Heidelberg, 2010.
21. Sin, L.T., A.R. Rahmat, and W.A.W.A. Rahman, Polylactic Acid Biopolymer Technology and Applications. Elsevier Inc, 2013.
22. NatureWorks, NatureWorks Ingeo™ Polylactide: Past, Present and Future. 2012.
23. Williams, C.K., Synthesis of functionalized biodegradable polyesters. Chemical Society Reviews, 2007. 36(10): p. 1573-1580.
24. Auras, R., L.-T. Lim, S.E.M. Selke, and H. Tsuji, Polylactic Acid: Synthesis, Structures, Properties, Processing, and Applications. John Wiley & Sons, Inc, 2010.
25. Pandey, A.K., Recent advancements of biodegradable polylactic acid/ polylactide: A review on synthesis, characterization and applications. Advanced Materials Letters, 2013.
26. Kaplan, D.L., Biopolymers from Renewable Resources. Springer-Verlag Berlin Heidelberg, 1998.
27. Mehta, R., V. Kumar, H. Bhunia, and S.N. Upadhyay, Synthesis of Poly(Lactic Acid): A Review. Journal of Macromolecular Science, Part C, 2005. 45(4): p. 325-349.
28. Woo, H.-G., Advanced Functional Materials. Hangzhou and Springer-Verlag Berlin Heidelberg, 2011.
29. Garlotta, D., A Literature Review of Poly(Lactic Acid). Journal of Polymers and the Environment, 2001. 9(2): p. 63-84.
30. Kricheldorf, H.R., Syntheses and application of polylactides. Chemosphere, 2001. 43(1): p. 49-54.
31. Dechy-Cabaret, O., B. Martin-Vaca, and D. Bourissou, Controlled Ring-Opening Polymerization of Lactide and Glycolide. Chemical Reviews, 2004. 104(12): p. 6147-6176.
32. Chisholm, M.H., Concerning the ring-opening polymerization of lactide and cyclic esters by coordination metal catalysts. Pure Appl. Chem., 2010. 82(8): p. 1647–1662.
33. Volume, U.S.H.P., Final Submittal Tin bis-2-ethylhexanoate CAS Number 301-10-0 The Metal Carboxylates Coalition, 2007.
34. Majerska, K., A. Duda, and S. Penczek, Kinetics and mechanism of cyclic esters polymerisation initiated with tin(II) octoate, 4. Influence of proton trapping agents on the kinetics of ε-caprolactone and L,L-dilactide polymerisation. Macromolecular Rapid Communications, 2000. 21(18): p. 1327-1332.
35. Zhang, X., D.A. MacDonald, M.F.A. Goosen, and K.B. McAuley, Mechanism of lactide polymerization in the presence of stannous octoate: The effect of hydroxy and carboxylic acid substances. Journal of Polymer Science Part A: Polymer Chemistry, 1994. 32(15): p. 2965-2970.
36. Kowalski, A., A. Duda, and S. Penczek, Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate, 1. Polymerization of ε-caprolactone. Macromolecular Rapid Communications, 1998. 19(11): p. 567-572.
37. Storey, R.F. and J.W. Sherman, Kinetics and Mechanism of the Stannous Octoate-Catalyzed Bulk Polymerization of ε-Caprolactone. Macromolecules, 2002. 35(5): p. 1504-1512.
38. Kowalski, A., A. Duda, and S. Penczek, Kinetics and Mechanism of Cyclic Esters Polymerization Initiated with Tin(II) Octoate. 3.† Polymerization of l,l-Dilactide. Macromolecules, 2000. 33(20): p. 7359-7370.

無法下載圖示 全文公開日期 2019/07/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE