簡易檢索 / 詳目顯示

研究生: 張乃文
Nai-Wen Chang
論文名稱: 營建工程專案動態物料配置最佳化模式之研究
Optimized Construction Project Dynamic Material Layout Planning
指導教授: 鄭明淵
Min-Yuan Cheng
口試委員: 姚乃嘉
Nie-Jia Yau
郭斯傑
Sy-Jye Guo
黃榮堯
Rong-Yao Huang
楊亦東
I-Tung Yang
曾仁杰
Ren-Jye Dzeng
曾惠斌
Hui-Ping Tserng
鄭明淵
Min-Yuan Cheng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 78
中文關鍵詞: 佈局優化動態物料場域配置規劃建築資訊模型人工智慧生物共生演化法
外文關鍵詞: Layout Optimization, Dynamic Material Site Layout Planning, Building Information Model, Artificial Intelligence, Symbiotic Organisms Search
相關次數: 點閱:191下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工程物料配置為臨時設施配置的重要項目之一;然而,工程管理人員在處理物料配置的時候,若缺乏事前有效的資料整合及規劃,很難綜合考量資源需求以求得最佳化的物料配置,除了缺乏效率外,同時亦無端損失許多的時間與成本。另外,也因現行的配置規劃過程中,其規劃所需的各種資料來源缺乏整體性,且資料格式並不一致。導致工程管理人員必須不斷從各個資料來源摘取所需的資料再展繪於圖上,冗長且重複的規劃過程,將造成管理人員相當沉重的負擔。
    本研究擬發展一套動態物料配置最佳化模式(Dynamic Construction Material Layout Planning Model),本模式主要以動態作業排程角度切入,探討最佳化物料配置問題。除考慮因時程進度演進,產生之動態物料需求及儲區位置、面積大小改變之變動因素外,為更貼近實際工程運作情形,亦將作業浮時納入考量,探討供需位置三維空間旅運距離會隨作業時程改變之動態物料配置問題;即結合時程、建築資訊模型技術、數量計算與工料分析作業流程,產生工程配置所需之動態需求資訊;再應用生物共生演算法(Symbiotic Organisms Search,SOS),求解最佳化的工區物料配置規劃。最後,應用於實際執行一建築專案,所求得動態配置位置規劃所需的總旅運距離為954,736公尺,與固定配置位置所需的總旅運距離為1,659,457公尺相比較,動態配置位置規劃節省了近二分之一的旅運距離長度,大幅縮短了物料搬運的成本耗費,更驗證本模式運作的成效。


    Construction material layout planning is a key project in temporary facility layouts. When allocating materials without effective resource consolidation and planning in advance, construction managers usually have difficulties in comprehensively determining resource demand to optimize material layout. This also leads to reduced efficiency, increased cost, and unnecessary loss of time. Currently, various sources of information concerning layout planning are disorganized and lack a consistent format, forcing construction managers to continually collect the required data from various sources and consolidate them into diagrams. This repetitive and time-consuming process is extremely cumbersome for construction managers.
    This study proposed the Dynamic Construction Material Layout Planning Optimization Model to investigate the optimization of material layout from the perspective of dynamic task scheduling. In addition to the variables of schedule advancement and evolution, dynamic material requirements, and changes in storage sites and areas, task float times were analyzed to account for the changes in three-dimensional travel distances between material supply and demand sites concurrently with changes in task schedules and ensure that the observations conformed to real-time conditions. First, schedule and building information modeling techniques as well as the procedures for quantity take-off and construction materials and quantity analysis were consolidated to produce dynamic material requirements data for construction layout planning. Second, the symbiotic organisms search algorithm was applied to derive the optimized construction site material layout plan. Finally, the proposed model was applied to a construction project. The required total distance for the dynamic material layout plan was 954,736 m, which saved roughly half of the required distance compared with the fixed material layout plan of 1,659,457 m. This greatly reduced material transportation costs and validated the effectiveness of the proposed model.

    摘 要..............................................................................I Abstract...........................................................................ii 致 謝.............................................................................iv 第一章 緒論..........................................................................1 1.1 研究動機.........................................................................1 1.2 研究目的.........................................................................3 1.3 研究範圍與限制....................................................................5 1.4 研究方法與流程....................................................................6 1.5 論文架構.........................................................................7 第二章 文獻探討.......................................................................9 2.1場域配置規劃相關研究文獻整理與討論.....................................................9 2.2 物料需求計劃.....................................................................13 2.2.1 物料需求計劃(MRP)的定義.........................................................13 2.2.2 MRP的概念與架構................................................................13 2.3 BIM與QTO整合應用相關文獻探討.......................................................15 2.3.1 建築資訊模型(BIM).............................................................15 2.3.2 BIM整合QTO相關應用.............................................................16 2.4生物共生演算法....................................................................18 2.4.1生物共生演算法概念...............................................................18 2.4.2生物共生演算法流程圖.............................................................20 2.4.3 生物共生演算法之應用與效能比較....................................................22 2.5 小結...........................................................................23 第三章 週期動態物料需求計劃............................................................24 3.1週期物料規劃......................................................................24 3.2考慮「浮時」影響因素之動態時程規劃....................................................26 3.3整合動態時程規劃與週期物料需求計畫....................................................28 3.4動態物料需求量(M(X)CNH)的計算公式...................................................29 第四章 動態物料配置最佳化模式之建立......................................................31 4.1 物料儲存區面積與需求位置分析........................................................32 4.1.1 建立BIM-QTO-B.O.M.串聯機制.....................................................32 4.1.2 週期動態物料需求計劃............................................................36 4.1.3 產生動態物料需求面積與需求位置....................................................37 4.2 物料存區可能區域分析..............................................................39 4.3 儲區潛在位置分析..................................................................40 4.4 物料配置最適儲區分析..............................................................41 4.4.1 動態存區配置規劃................................................................41 4.4.2 旅運分析之目標函數與方程式.......................................................43 第五章 案例分析與模式實測驗證...........................................................46 5.1 案例背景介紹.....................................................................46 5.2 最佳化搜尋步驟說明................................................................49 5.2.1 最佳化搜尋流程圖和求解步驟說明....................................................49 5.2.2 虛擬程式碼(pseudocode)........................................................51 5.3 最佳化搜尋結果與探討..............................................................52 第六章 結論與建議.....................................................................55 6.1 結論...........................................................................55 6.2 建議...........................................................................56

    [1]G. Abdou, S.P. Dutta, An integrated approach to facilities layout using expert systems, International Journal of Production Research 28 (4) (1990) 685-708.
    [2]M. Abdullahi, M.A. Ngadi, Correction: Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment., PLoS One 11 (8) (2016).
    [3]A. Baykasoğlu, N.N.Z. Gindy, A simulated annealing algorithm for dynamic layout problem, Computers & Operations Research 28 (14) (2001) 1403-1426.
    [4]O. Bozorg-Haddad, A. Azarnivand, S.-M. Hosseini-Moghari, H.A. Loáiciga, Optimal operation of reservoir systems with the symbiotic organisms search (SOS) algorithm, Journal of Hydroinformatics (2017).
    [5]R. Çakmak, İ.H. Altaş, Optimal scheduling of time shiftable loads in a task scheduling based demand response program by symbiotic organisms search algorithm, 2017 Saudi Arabia Smart Grid (SASG), 2017, pp. 1-7.
    [6]M.-Y. Cheng, L.-C. Lien, A hybrid AI-based particle bee algorithm for facility layout optimization, Engineering with Computers 28 (1) (2012) 57-69.
    [7]M.-Y. Cheng, D. Prayogo, D.-H. Tran, Optimizing Multiple-Resources Leveling in Multiple Projects Using Discrete Symbiotic Organisms Search, Journal of Computing in Civil Engineering 30 (3) (2016) 04015036.
    [8]M.-Y. Cheng, S.-C. Yang, GIS-Based Cost Estimates Integrating with Material Layout Planning, Journal of Construction Engineering and Management 127 (4) (2001) 291-299.
    [9]M.Y. Cheng, J.T. O'Connor, ArcSite: Enhanced GIS for Construction Site Layout, Journal of Construction Engineering and Management 122 (4) (1996) 329-336.
    [10]M.Y. Cheng, J.T. O'Connor, Site layout of construction temporary facilities using enhanced-geographical information system (GIS), J. Constr. Engrg. and Mgmt., ASCE 112 (4) (1996) 329-336.
    [11]M.Y. Cheng, D. Prayogo, Symbiotic Organisms Search: A new metaheuristic optimization algorithm, Computers & Structures 139 (2014) 98-112.
    [12]J. Choi, H. Kim, I. Kim, Open BIM-based quantity take-off system for schematic estimation of building frame in early design stage, Journal of Computational Design and Engineering 2 (1) (2015) 16-25.
    [13]S.D. Deshpande, S. Krishnamoorthy, V.B. Deshpande, Computer-aided site layout for construction projects, Omega 15 (2) (1987) 167-174.
    [14]S. Duman, Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones, Neural Computing and Applications 28 (11) (2017) 3571-3585.
    [15]C. Eastman, Teicholz, P., Sacks, R. & Liston, K., BIM Handbook: a guide to building information modeling for owners, managers, designery, engineers, and contractors, New Jersey: John Wiley & Sons, Inc., 2011.
    [16]P. F. Rad, B. M. James, The layout of temporary construction facilities, Cost Engineering 25 (2) (1983) 19-26.
    [17]A. Hamiani, CONSITE : a knowledge-based expert system framework for construction site layout, University of Texas, 1987.
    [18]T. Hartmann, H. van Meerveld, N. Vossebeld, A. Adriaanse, Aligning building information model tools and construction management methods, Automation in Construction 22 (Supplement C) (2012) 605-613.
    [19]T. Hegazy, E. Elbeltagi, EvoSite: Evolution-Based Model for Site Layout Planning, Journal of Computing in Civil Engineering 13 (3) (1999) 198-206.
    [20]T.M. Hegazy, E. Elbeltagi, Simplified Spreadsheet Solutions: AModel for Site Layout Planning, Journal of Cost Engineering 42 (1) (2000) 24-30.
    [21]S.S. Heragu, A. Kusiak, Machine layout: an optimization and knowledge-based approach, International Journal of Production Research 28 (4) (1990) 615-635.
    [22]C. Huang, C.K. Wong, Optimisation of site layout planning for multiple construction stages with safety considerations and requirements, Automation in Construction 53 (2015) 58-68.
    [23]U.o.T.a.A.C.I. Institute, U.o.T.a.A.B.o.E. Research, Constructability Concepts File, Institute, Bureau of Engineering Research, University of Texas at Austin, 1987.
    [24]Z. Jaffel, M. Farah, A symbiotic organisms search algorithm for feature selection in satellite image classification, 2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), 2018, pp. 1-5.
    [25]H. Jang, S. Lee, S. Choi, Optimization of floor-level construction material layout using Genetic Algorithms, Automation in Construction 16 (4) (2007) 531-545.
    [26]H. Kamankesh, V.G. Agelidis, A. Kavousi-Fard, Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand, Energy 100 (2016) 285-297.
    [27]P.F. Kaming, G.D. Holt, S.T. Kometa, P.O. Olomolaiye, Severity diagnosis of productivity problems—a reliability analysis, International Journal of Project Management 16 (2) (1998) 107-113.
    [28]M. Kenan Dosoglu, U. Guvenc, S. Duman, Y. Sonmez, H. Tolga Kahraman, Symbiotic organisms search optimization algorithm for economic/emission dispatch problem in power systems, Neural Computing and Applications 29 (3) (2018) 721-737.
    [29]A. Kiviniemi, J. Karlshøj, V. Tarandi, H. Bell, O.J. Karud, Review of the Development and Implementation of IFC compatible BIM, 2008.
    [30]A. Kiviniemi, J. Karlshøj, V. Tarandi, H. Bell, O.J. Karud, Review of the Development and Implementation of IFC compatible BIM., Technical University of Denmark, 2008, p. 128.
    [31]H.-Y. Lee, I.T. Yang, Y.-C. Lin, Laying out the occupant flows in public buildings for operating efficiency, Building and Environment 51 (2012) 231-242.
    [32]R.C. Lee, J.M. Moore, CORELAP: Computerized Relationship Layout Planning, Journal of Industrial Engineering 8 (3) (1967) 195-200.
    [33]L.-C. Lien, M.-Y. Cheng, A hybrid swarm intelligence based particle-bee algorithm for construction site layout optimization, Expert Systems with Applications 39 (10) (2012) 9642-9650.
    [34]V.A. Mabert, The early road to material requirements planning, Journal of Operations Management 25 (2) (2007) 346-356.
    [35]M.J. Mawdesley, S.H. Al-jibouri, H. Yang, Genetic Algorithms for Construction Site Layout in Project Planning, Journal of Construction Engineering and Management 128 (5) (2002) 418-426.
    [36]T.L. McCuen, BIM and Cost Estimating: A Change in the Process for Determining Project Costs, Building Information Modeling, 2015, pp. pp.63-81.
    [37]S. Nama, A.K. Saha, An ensemble symbiosis organisms search algorithm and its application to real world problems, Decision Science Letters 7 (2) (2018) pp. 103-118.
    [38]C. Nicolle, C. Cruz, Semantic Building Information Model and Multimedia for Facility Management, in: J. Filipe, J. Cordeiro (Eds.), Web Information Systems and Technologies: 6th International Conference, WEBIST 2010, Valencia, Spain, April 7-10, 2010, Revised Selected Papers, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 14-29.
    [39]D. Nihad, E.-A. Bassam, Optimal design of analog active filters using symbiotic organisms search, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 0 (0) (2018) e2323.
    [40]J. Orlicky, Material Requirements Planning, McGraw Hill, New York, 1975.
    [41]A. Panda, S. Pani, A Symbiotic Organisms Search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems, Applied Soft Computing 46 (2016) 344-360.
    [42]I.N. Papadaki, A.P. Chassiakos, Multi-objective Construction Site Layout Planning Using Genetic Algorithms, Procedia Engineering 164 (2016) 20-27.
    [43]G.W. Plossl, J. Orlicky, Orlicky's Material Requirements Planning, McGraw-Hill Professional, 1994.
    [44]C. Popescu, Managing temporary facilities for large projects., Proceeding of the Project Management Institute and INTERNET Joint Symposium, Boston, MA, 1981, pp. 170–173.
    [45]D. Prayogo, An Innovative Parameter-Free Symbiotic Organisms Search (SOS) for Solving Construction-Engineering Problems, Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, 2015.
    [46]B.T. Preas, M.J. Lorenzetti, B.D. Ackland, Physical design automation of VLSI systems, Benjamin/Cummings Pub. Co., 1988.
    [47]R. Riedel, Facilities planning – 4th edition by J.A. Tompkins, J.A. White, Y.A. Bozer and J.M.A. Tanchoco, International Journal of Production Research 49 (24) (2011) 7519-7520.
    [48]W.E. Rodriguez‐Ramos, R.L. Francis, Single Crane Location Optimization, Journal of Construction Engineering and Management 109 (4) (1983) 387-397.
    [49]D. Roginski, Quantity Takeoff process for bidding stage using BIM tools in Danish Construction Industry., Technical University of Denmark, 2011.
    [50]F. Sadeghpour, M. Andayesh, The constructs of site layout modeling: an overview, Canadian Journal of Civil Engineering 42 (3) (2015) 199-212.
    [51]F. Sadeghpour, O. Moselhi, S.T. Alkass, Computer-Aided Site Layout Planning, Journal of Construction Engineering and Management 132 (2) (2006) 143-151.
    [52]S. Saha, V. Mukherjee, A novel chaos-integrated symbiotic organisms search algorithm for global optimization, Soft Computing 22 (11) (2018) 3797-3816.
    [53]H. Said, K. El-Rayes, Optimal Material Logistics Planning in Congested Construction Sites, Construction Research Congress 2012, West Lafayette, Indiana, United States, 2012, pp. 1580-1589.
    [54]J. Sapp, Evolution by association: a history of symbiosis: a history of symbiosis, Oxford University Press, New York, 1994.
    [55]M.H. Sebt, E. Parvaresh Karan, M.R. Delavar, Potential Application of GIS to Layout of Construction Temporary Facilitie, International Journal of Civil Engineering 6 (4) (2008) 235-292.
    [56]D.M. Smith, An Investigation of the Space Constraint Problem in Construction Planning, Virginia Polytechnic Institute and State University, Blacksburg, Va., 1987.
    [57]P. Smith, Project Cost Management with 5D BIM, Procedia - Social and Behavioral Sciences 226 (2016) 193-200.
    [58]B. Succar, Building information modelling framework: A research and delivery foundation for industry stakeholders, Automation in Construction 18 (3) (2009) 357-375.
    [59]O. Tang, R.W. Grubbström, Planning and replanning the master production schedule under demand uncertainty, International Journal of Production Economics 78 (3) (2002) 323-334.
    [60]C.B. Tatum, J.A. Harris, Construction plant requirements for nuclear sites, Journal of the Construction Division 107 (4) (1981) 543-550.
    [61]G.G. Tejani, V.J. Savsani, V.K. Patel, Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization, Journal of Computational Design and Engineering 3 (3) (2016) 226-249.
    [62]I.D. Tommelein, R.E. Levitt, B. Hayes-Roth, SightPlan: An Artificial Intelligence Tool to Assist Construction Manager with Site Layout, 6th International Symposium on Automation and Robotics in Construction, San Francisco, USA, 1989, pp. 340-347.
    [63]I.D. Tommelein, P.P. Zouein, Interactive Dynamic Layout Planning, Journal of Construction Engineering and Management, ASCE 119 (2) (1993) 266-287.
    [64]D.-H. Tran, M.-Y. Cheng, D. Prayogo, A novel Multiple Objective Symbiotic Organisms Search (MOSOS) for time–cost–labor utilization tradeoff problem, Knowledge-Based Systems 94 (2016) 132-145.
    [65]R. Volk, J. Stengel, F. Schultmann, Building Information Modeling (BIM) for existing buildings — Literature review and future needs, Automation in Construction 38 (2014) 109-127.
    [66]A. Warszawski, Expert systems for crane selection, Construction Management and Economics 8 (2) (1990) 179-190.
    [67]I.-C. Yeh, Construction-Site Layout Using Annealed Neural Network, Journal of Computing in Civil Engineering 9 (3) (1995) 201-208.
    [68]P.P. Zouein, MoveSchedule: A Planning Tool for Scheduling Space use on Construction Sites, Civil and Environmental Engrg. Dept., University of Michigan, 1996.
    [69]邱雅萍, 自動調適生物共生演算法在工程上之應用—以鋼筋裁切為例, 國立臺灣科技大學營建工程系,碩士論文, 2017.
    [70]張有恆, 儲運管理, 華泰出版社, 1980.
    [71]楊舜清, 工程估價與物料管理資訊整合應用模式, 國立台灣科技大學營建工程技術學系,碩士論文, 1998.
    [72]鄭明淵, 邱建國, 邱永芳, 吳育偉, 徐梓隆, 吳宏興, 林正軒, 創新生物共生演算法(SOS)在橋梁生命週期風險評估與維護策略之研究, 中國土木水利工程學刊 26卷 (4期) (2014) P293 - 308.
    [73]謝博全, BIM在建築生命週期過程應用之研究, 中國科技大學建築研究所,碩士論文, 2011.

    無法下載圖示 全文公開日期 2023/08/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE