簡易檢索 / 詳目顯示

研究生: 趙璽榮
Hsi-Jung Chao
論文名稱: 奈米晶體於光敏化劑及背電極之太陽能電池之應用
Application of Nanocrystals in Photosensitizers and Counter Electrodes of Solar Cells
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 何郡軒
Jinn-Hsuan Ho
陳志平
Chih-Ping Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 81
中文關鍵詞: 量子點硒化鈷背電極
外文關鍵詞: Cdx, CuInS2, quauntum dot, CoxSe
相關次數: 點閱:185下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討分兩部分,第一部份量子點敏化太陽能電池,分析以一步合成之Cdx:CuInS2量子點之光電性質,且將高量子產率的量子點作為光敏化劑應用在太陽能電池上。第二部份為染料敏化太陽能電池,欲使電池具發展性,必須改變背電極的性質,而背電極所須具備的條件為高催化活性和高導電性,本實驗室以一步合成合成相對於Pt具高光電轉換效率的CoxSe背電極,是可取代白金的背電極材料,本研究以電化學方法量測分析,比較背電極的優劣性質。

    第一部分:
    使用預先合成法(Pre-synthesis)合成Cd:CuInS2,改變前驅物的比例與反應時間,探討量子點之光學性質及電化學性質。使用UV, PL分析量子點之光學性質,CV量測量子點的能隙,再結合共敏化效應的概念,比較Cd:CuInS2與Cd:CuInS2/CdSe(4)兩電池之光電轉換效率。

    第二部分:
    為了使染料敏化太陽能電池具發展性,本研究改變背電極的性質取代昂貴的白金,採用水熱法一步合成硒化鈷(CoxSe)、硒化鎳(NixSe)、硒化銅(CuxSe)背電極,CoxSe背電極光電轉換效率可達6.53 % 超過白金效率,且CoxSe具高催化性、低成本之優點,極具經濟效益。使用SEM, EDS, EIS, Tafel, CV, J-V curve分析背電極材料之結構、界面性質和光電轉換效率。


    In this study, our research focused on two parts. The first part is quantum dot sensitized solar cell (QDSSC) and the second part is dye sensitized solar cells (DSCs). In the first part, we synthesized Cdx:CuInS2 quaternary QDs using a one-pot non-injection approach of alloying CuInS2 with Cd2+. Synthesized high quantum yield QDs optical and electrical properties were analyzed by applying them QDs to solar cell application and cyclic voltaic (CV) measurement. We used UVPL and CV to measure photoluminescence, band gap of QDs respectively. The combined co-sensitization’s concept were used to compare Cd:CIS and Cd:CIS/CdSe(4) QDs photoelectric conversion efficiency (PCE) 1.70 % and 2.86 %, respectively.
    In other part, we present a facile one step hydrothermal approach for in situ growth of metal selenides on FTO glass. In this part, electrochemical analysis was employed to understand dynamic behavior of metal selenides and Pt counter electrode. In order efficiency development of counter electrodes and replacement of expensive platinum in DSSC, we used a facile one step hydrothermal method to synthesize CoxSe, NixSe and CuxSe counter electrodes. A maximum energy conversion efficiency of 6.53 % was obtained under AM1.5G simulated solar light for the cell fabricated with CoxSe as the counter electrode, which is better than Pt. So Pt can be replaced by cobalt selenide as counter electrode (CE) since it has higher PCE than platinum (Pt). The resulted CoxSe can perform better catalytic activity and low-cost requirement. We used SEM, EDS, EIS, Tafel, CV, J-V curve to analyze counter electrode’s structure, interface characteristic and PCE.

    摘要 I Abstract II 致謝 III 總目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與內容 2 第二章 理論基礎與文獻回顧 3 2.1 奈米半導體材料之光學特性與理論 3 2.1.1小尺寸效應 4 2.1.2表面效應 5 2.1.3量子尺寸效應和量子穿隧效應 7 2.2 量子點發展與應用 8 2.2.1量子點特性 8 2.2.2量子點製備與發展 11 2.3 染料敏化太陽能電池 16 2.3.1 起源與發展 16 2.3.2 工作原理 18 2.3.3 元件介紹 20 2.3.4 背電極材料合成與文獻回顧 24 第三章 實驗方法與原理 33 3.1 實驗藥品 37 3.2 實驗儀器與設備 39 3.3 實驗步驟 39 3.3.1 導電玻璃基板清洗 39 3.3.2 二氧化鈦光電極薄膜製備 39 3.3.3 量子點合成 40 3.3.4 背電極合成 41 3.3.5 電解液配置 42 3.3.6 QDSSC和DSSC元件組裝 42 3.4 樣品分析 43 第四章 實驗結果與討論 56 4.1 I-II-III-VI族Cdx:CuInS2量子點材料分析 56 4.1.1 Cdx:CuInS2量子點之光電分析…..…………………………..….…...56 4.1.2 QDSSC光電轉換效率分析 61 4.2 染料敏化太陽能電池之硒化物背電極材料分析 63 4.2.1 硒化物背電極之合成介紹 63 4.2.2 硒化物背電極之結構分析 64 4.2.3 硒化物背電極之電化學分析 67 4.2.4 硒化物背電極之光電轉換效率分析 73 第五章 結論與未來展望 77 參考文獻 78

    1. 馬振基編撰(2003),奈米材料科技原理與應用,全華科技圖書股份有限公司。
    2. 張立德等編(2002),奈米材料和奈米結構,鼎隆圖書股份有限公司。
    3. 李思毅, 李佳穎, 曾俊元, 物理雙月刊, 2004, 26, 473。
    4. 馬遠榮, 科學發展, 2004, 382, 72。
    5. A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, Science, 1992, 256, 1425.
    6. CHEMISTRY(THE CHINESE CHEM. SOC., TAIPEI)December. 2003, 61, 585.
    7. V. I. Klimov, Nanocrystal quantum dots 2nd ed., 2010.
    8. P. V. Kamat, J. Phys. Chem. Lett., 2013, 4, 908.
    9. M. C. Hanna and A. J. Nozik, J. Appl. Phys., 2006, 100, 074510.
    10. Robel I, Subramanian V, Kuno M, Kamat PV, J. Am. Chem. Soc., 2006, 128, 2385.
    11. Zaban A, Micic OI, Gregg BA, Nozik AJ, Langmuir, 1998, 14(12), 3153.
    12. Mora-Seró I, Giménez S, Fabregat-Santiago F, Gómez R, Shen Q, Toyoda T, Bisquert J, Acc Chem Res, 2009, 42(11), 1848.
    13. Jun, Y-W; Choi, J-S; Cheon, J, Angew. Chem. Int. Ed., 2006, 45, 3414.
    14. L.-s. Li, J. Hu,W. Yang, A. P. Alivisatos, Nano Lett. 2001, 1, 349.
    15. J. H. Werner, S. Kolodinski and H. J. Queisser, Phys. Rev. Lett., 1994, 72, 3851.
    16. A. J. Nozik, Annu. Rev. Phys. Chem.,2001, 52, 193.
    17. A. J. Nozik, Inorg. Chem., 2005, 44, 6893.
    18. A. Franceschetti, J. M. An and A. Zunger, Nano Lett., 2006, 6, 2191.
    19. W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil and X. Y. Zhu, Science, 2010, 325, 1543.
    20. A. J. Nozik, Physica E, 2002, 14, 115.
    21. R. D. Schaller and V. I. Klimov, Phys. Rev. Lett., 2004, 96, 186601.
    22. A. J. Nozik, Inorganic Chemistry, 2005, 44, 6893.
    23. Gorer, S.; Hodes, G., J.Phys. Chem., 1994, 98, 5338.
    24. Guang Zhu, Likun Pan, Tao Xu, and Zhuo Sun, ACS Appl. Mater. Interfaces, 2011, 3, 1472.
    25. Guang Zhu, Likun Pan, Tao Xu, and Zhuo Sun, ACS Appl. Mater. Interfaces, 2011, 3, 3146.
    26. A.P. Alivisatos, Science, 1996, 271, 933.
    27. Watson D.F., J Phys Chem Lett, 2010, 1, 2299.
    28. C. C. Chang, J. K. Chen, C. P. Chen, C. H. Yang and J. Y. Chang, ACS Appl. Mater. Interfaces, 2013, 5, 11296.
    29. J. Moser, Chem., 1887, 373.
    30. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature, 1976, 261, 402.
    31. B. O’Regan and M. Grätzel, Nature, 1991, 353, 737.
    32. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, J. Am. Chem. Soc., 2005, 127, 16835.
    33. A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Grätzel, Science, 2011, 334, 629.
    34. F. T. Kong, S. Y. Dai and K. J. Wang, Adv. Optoelectron., 2007, 1.
    35. M. Grätzel, Inorg. Chem., 2005, 44 , 6841.
    36. 孟慶波, 林原, 戴松元, 物理, 2004, 33, 177。
    37. D. Ulrike, Surf. Sci. Rep., 2003, 48, 53.
    38. D. Reyes-Coronado, G. Rodríguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. d. Coss and G. Oskam, Nanotechnology, 2008, 19, 145605.
    39. Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno and M. Grätzel, ZPC, 2007, 221, 319.
    40. Y. Xu and M. A. A. Schoonen, AmMin, 2000, 85, 543.
    41. S.-W. Rhee and W. Kwon, Korean J. Chem. Eng., 2011, 28, 1481.
    42. G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, Sol. Energy Mater. Sol. Cells, 2001, 70, 85.
    43. Y.-S. Yen, et al. J. Mater. Chem., 2012, 8734.
    44. M. Wu, et al. ChemSusChem, 2012, 1343.
    45. Chen, L.; Tan, W.; Zhang, J.; Zhou, X.; Zhang, X.; Lin, Y., Electrochim. Acta, 2010, 55, 3721.
    46. Li, P.; Wu, J.; Lin, J.; Huang, M.; Lan, Z.; Li, Q. Electrochim. Acta, 2008, 53, 4161.
    47. Wang, G.; Lin, R.; Lin, Y.; Li, X.; Zhou, X.; Xiao, X., Electrochim. Acta, 2005, 50, 5546.
    48. Ikegami, M.; Miyoshi, K.; Miyasaka, T.; Teshima, K.; Wei, T. C.;Wan, C. C.; Wang, Y. Y., Appl. Phys. Lett., 2007, 90, 122.
    49. Olsen, E.; Hagen, G.; Lindquist, S.-E., Sol. Energy Mater. Sol. Cells, 2000, 63, 267.
    50. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida and E. Abe, J. Electroanal. Chem., 2004, 570, 257.
    51. Pan, S.; Yang, Z.; Li, H.; Qiu, L.; Sun, H.; Peng, H., J. Am. Chem. Soc., 2013, 135, 10622.
    52. Levy, R. B.; Boudart, M., Science, 1973, 181, 547.
    53. Oyama, S. T., Catal. Today, 1992, 15, 179.
    54. Wu, M.; Lin, X.; Hagfeldt, A.; Ma, T., Angew. Chem., Int. Ed., 2011, 50, 3520.
    55. Wu, M.; Lin, X.; Wang, Y.; Wang, L.; Guo, W.; Qi, D.; Peng, X.;Hagfeldt, A.; Grätzel, M.; Ma, T., J. Am. Chem. Soc., 2012, 134, 3419.
    56. Yun, S.; Wang, L.; Zhao, C.; Wang, Y.; Ma, T., Phys. Chem. Chem. Phys., 2013, 28, 4286.
    57. Yun, S.; Wu, M.; Wang, Y.; Shi, J.; Lin, X.; Hagfeldt, A.; Ma, T., Chem Sus Chem, 2013, 6, 411.
    58. Q. W. Jiang , G. R. Li , S. Liu and X. P. Gao, J. Phys. Chem. C, 2010, 114, 13397.
    59. Hou, Y.; Chen, Z.; Wang, D.; Zhang, B.; Yang, S.; Wang, H.;Hu, P.; Zhao, H.; Yang, H., Small, 2013, 10, 484.
    60. Wang, M.; Anghel, A.; Marsan, B.; Ha, N. C.; Pootrakulchote,N.; Zakeeruddin, S. M.; Grätzel, M., J. Am. Chem. Soc., 2009, 131, 15976.
    61. Chang, S.-H.; Lu, M.-D.; Tung, Y.-L.; Tuan, H.-Y., ACS Nano, 2013, 7, 9443.
    62. Kung, C.-W.; Chen, H.-W.; Lin, C.-Y.; Huang, K.-C.; Vittal, R.; Ho, K.-C., ACS Nano, 2012, 6, 7016.
    63. Sun, H.; Qin, D.; Huang, S.; Guo, X.; Li, D.; Luo, Y.; Meng, Q., Energy Environ. Sci., 2011, 4, 2630.
    64. Zhao, W.; Zhu, X.; Bi, H.; Cui, H.; Sun, S.; Huang, F., J. Power Sources, 2013, 242, 28.
    65. Zhang, H.; Yang, L.; Liu, Z.; Zhou, Z.; Chen, W.; Li, Q.; Liu, L., J. Mater. Chem., 2012, 22, 18572.
    66. Wang, H.-C.; Wang, D.-Y.; Jiang, Y.-T.; Chen, H.-A.; Chen, C.-C.; Ho, K.-C.; Chou, H.-L.; Chen, C.-W., Angew. Chem., Int. Ed., 2013, 52, 6694.
    67. Huang, Q.-H.; Ling, T.; Qiao, S.-Z.; Du, X.-W., J. Mater. Chem. A, 2013, 1, 11828.
    68. Wu, M.; Wang, Y.; Lin, X.; Yu, N.; Wang, L.; Wang, L. L.; Hagfeldt, A.; Ma, T., Phys. Chem. Chem.Phys., 2011, 13, 19298.
    69. Wu, M.; Bai, J.; Wang, Y.; Wang, A.; Lin, X.; Wang, L.; Shen,Y.; Wang, Z.; Hagfeldt, A.; Ma, T., J. Mater. Chem., 2012, 22, 11121.
    70. Dou, Y.; Li, G.; Gao, X., Phys. Chem. Chem. Phys., 2012, 14, 1339.
    71. Gong, F.; Wang, H.; Xu, X.; Zhou, G.; Wang, Z.-S., J. Am.Chem. Soc., 2012, 134, 10953.
    72. Gong, F.; Xu, X.; Li, Z.; Zhou, G.; Wang, Z.-S., Chem. Commun., 2013, 49, 1437.
    73. Zhang, Z.; Pang, S.; Xu, H.; Yang, Z.; Zhang, X.; Liu, Z.; Wang,X.; Zhou, X.; Dong, S.; Chen, X.; et al., RSC Adv., 2013, 3,16528.
    74. Guo, J.; Shi, Y.; Zhu, C.; Wang, N.; Ma, T., J. Mater. Chem., 2013, 1, 11874.
    75. Guo, J.; Shi, Y.; Chu, Y.; Ma, T., Chem. Commun., 2013, 49, 10157.
    76. Xin, X.; He, M.; Han, W.; Jung, J.; Lin, Z., Angew. Chem., Int. Ed., 2011, 50, 11739.
    77. Wang, J.; Xin, X.; Lin, Z., Nanoscale, 2011, 3, 2040.
    78. Yuan, S.-J.; Zhou, Z.-J.; Hou, Z.-L.; Zhou, W.-H.; Yao, R.-Y.;Zhao, Y.; Wu, S.-X., Chem. A Eur. J., 2013, 19,10107.
    79. Yang, J.; Bao, C.; Zhang, J.; Yu, T.; Huang, H.; Wei, Y.; Gao, H.; Fu, G.; Liu, J.; Zou, Z., Chem. Commun., 2013, 49, 2028.
    80. Yao, R.-Y.; Zhou, Z.-J.; Hou, Z.-L.; Wang, X.; Zhou, W.-H.; Wu, S.-X., ACS Appl. Mater. Interfaces, 2013, 5, 3143.
    81. Lin, J.-Y.; Chou, S.-W., Electrochem. Commun., 2013, 37, 11.
    82. Zheng, X.; Guo, J.; Shi, Y.; Xiong, F.; Zhang, W.-H.; Ma, T.; Li, C., Chem. Commun., 2013, 49, 9645.
    83. Bi, H.; Zhao, W.; Sun, S.; Cui, H.; Lin, T.; Huang, F.; Xie, X.; Jiang, M., Carbon, 2013, 61, 116.
    84. Li, L.; Liu, Y.; Yang, N.; Tang, Z.; Zhao, H.; Ma, G.; Su, Z.;Wang, D., Energy Environ. Sci., 2013, 6, 835.
    85. A.J.Bard and L.R. Faulkner, “Electrochemical Methods”, John Wiley&Sons, New York, 1986, chap3.
    86. 電化學原理與方法(二版) 胡啟章編著。
    87. Hanch, A.; Georg, A. Electrochim. Acta 2001, 46, 3457.
    88. Pei-Jung Wu, Jhe-Wei Yu, His-Jung Chao, and Jia-Yaw Chang, Chem. Mater., 2014, 26, 3485.
    89. Bin-Long Wu, Hsi-Jung Chao, Chih-Ping Chen, Cheng-Hsien Yangc and Jia-Yaw Chang, RSC Adv., 2015, 5, 36605.

    QR CODE