簡易檢索 / 詳目顯示

研究生: 林佳君
Chia-Chun Lin
論文名稱: 分析與製備應用於引導骨再生之生物活性玻璃/膠原蛋白複合支架
Characterization and preparation of bioactive glass/collagen composite scaffolds for guided bone regeneration
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 施劭儒
Shao-Ju Shih
王丞浩
Chen-Hao Wang
周育任
Yu-Jen Chou
林穎志
Ying-Chih Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 114
中文關鍵詞: 引導骨再生複合支架膠原蛋白生物活性玻璃
外文關鍵詞: Guided bone regeneration, Composite scaffold, Collagen, Strontium, Bioactive glass
相關次數: 點閱:419下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

牙周病與齲齒患者容易面臨齒槽骨萎縮等問題,在植牙的過程中齒槽骨之寬度與高度會影響植體的穩定度,為了填補齒槽骨的不足需要進行引導骨再生術以利於後續的植牙程序,除此之外引導骨再生術可應用於拔牙後之齒槽骨保存,能預防齒槽骨流失的情況發生。材料上選擇膠原蛋白,其具有生物相容性、可降解性與良好的凝血功能,但機械性質較差,因此添加生物活性玻璃(Bioactive glass, BG)來改善問題,透過摻雜鍶增加成骨細胞活性並促進新骨生長。
本研究以將實驗分為固含量與粒徑大小兩階段,藉此設計出符合臨床上應用於引導骨再生之牙填充材。複合支架會透過掃描式電子顯微鏡、水銀測孔儀與萬用試驗機來分析支架結構、孔隙度、孔洞大小與抗壓強度,並評估複合支架體外細胞活性、生物降解行為與膨潤度。第一階段為不同Sr-BG粉末固含量(0、10、20、30和40 wt%)之複合支架,粉末固含量會改變支架孔隙度與抗壓強度,進而影響骨頭生長和血凝塊穩定性,其中以20 wt% Sr-BG之複合支架具有最大的抗壓強度與高孔隙度為最佳固含量。第二階段為不同粒徑大小(1、7、11和42 µm) Sr-BG粉末之複合支架,粉末粒徑會影響生物活性、體外細胞活性與降解行為,根據實驗結果以11 µm Sr-BG粉末的生物活性最好,且複合支架體外細胞活性高於100%代表具有生物相容性,而支架降解行為隨著粒徑越大其降解速度越慢。


Patients with periodontal disease and tooth decay are prone to symptoms of alveolar bone atrophy. The width and height of the alveolar bone will affect the stability of the denture implants. About this problem, guided bone regeneration can improve. In addition, it also uses for the preservation of alveolar bone after tooth extraction, which can avoid the problem of alveolar bone loss. Collagen has good biocompatibility, biodegradation, and blood coagulation function. Bioactive glass can improve the mechanical properties of the scaffold and enhance the bone growth ability through strontium.
In this study, The experiment divides into two parts of solid contents and particle sizes for design the scaffold to meet the clinical application of dental filling materials for guided bone regeneration. We analyze the scaffold's structure, porosity, pore size, and compressive strength through the scanning electron microscope, mercury porosimeter, and universal testing machine. Also, evaluate scaffold in vitro cell viability and biodegradation. The first part analyzed composite scaffolds with different Sr-BG powder solid content (0, 10, 20, 30, and 40 wt%). The solid content affects the porosity and compressive strength of the scaffold, therefore affecting bone growth and blood clot stability. According to the compressive strength and high porosity, obtained 20 wt% Sr-BG as the best solid content of the scaffold. The second part analyzed composite scaffolds with different particle sizes (1, 7, 11, and 42 µm). According to the experimental results, the best bioactivity of particle size is 11 µm Sr-BG. Also, the in vitro cell viability of the 11 µm composite scaffold is higher than 100%, which means that it has biocompatibility, and the degradation behavior of the scaffold is slower with the larger particle size.

摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第1章 緒論 1 1.1研究背景 1 1.2研究動機 3 第2章 文獻回顧 5 2.1引導骨再生 5 2.1.1引導骨再生之材料 6 2.1.2 引導骨再生之生物機制 8 2.1.3引導骨再生之性質 10 2.2膠原蛋白 16 2.2.1膠原蛋白之類型 16 2.2.2膠原蛋白之應用 20 2.3生物活性玻璃 24 2.3.1生物活性玻璃之組成 24 2.3.2生物活性玻璃之性質 27 2.4冷凍乾燥法 30 2.4.1冷凍乾燥法之原理 30 2.4.2冷凍乾燥法之應用 32 第3章 實驗方法與目的 34 3.1實驗設計 34 3.2實驗藥品 38 3.3實驗儀器 39 3.4樣品製備方法 40 3.4.1摻雜鍶之生物活性玻璃粉末 40 3.4.2膠原蛋白/生物活性玻璃複合支架 43 3.5樣品性質及分析方法 45 3.5.1X光繞射分析儀 45 3.5.2場發射雙束型聚焦離子束顯微鏡 46 3.5.3傅立葉轉換紅外線光譜儀 47 3.5.4氮氣吸/脫附分析儀 48 3.5.5水銀測孔儀 49 3.5.6壓縮試驗 50 3.5.7膨潤度測試 51 3.5.8體外生物降解行為 52 3.5.9體外生物活性評估 52 3.5.10體外細胞活性評估 53 第4章 實驗結果 56 4.1生物活性玻璃性質分析 56 4.1.1晶相分析 57 4.1.2形貌及粒徑分析 58 4.1.3比表面積分析 60 4.1.4體外生物活性評估 61 4.2不同粉末固含量之複合支架分析 66 4.2.1巨觀形貌 66 4.2.2微結構分析 67 4.2.3孔洞分析 69 4.2.4壓縮試驗 71 4.2.5膨潤度測試 73 4.3 不同粉末粒徑大小之複合支架分析 74 4.3.1巨觀形貌 74 4.3.2微結構分析 75 4.3.3孔洞分析 77 4.3.4壓縮試驗 79 4.3.5膨潤度測試 80 4.3.6體外生物降解行為 81 4.3.7體外細胞活性評估 83 第5章 結果討論 85 5.1 不同Sr-BG粉末固含量之複合支架其孔隙度與抗壓強度 85 5.2 不同粒徑大小之Sr-BG粉末對複合支架的影響 87 5.2.1不同粒徑大小Sr-BG粉末之生物活性評估 87 5.2.2不同粒徑大小Sr-BG粉末之複合支架評估 89 5.3 複合支架孔洞性質與膨潤度之關係 91 第6章 結論 93 第7章 未來工作 95 參考文獻 96

[1] 黃茂栓、陳彥廷、陳建志、吳睿恩, 104-105年度成年與老年人口腔健康調查計畫, (2015-2016).
[2] B. Wessing, I. Urban, E. Montero, W. Zechner, M. Hof, J. Alández Chamorro, N. Alández Martin, G. Polizzi, S. Meloni, M. Sanz, A multicenter randomized controlled clinical trial using a new resorbable non‐cross‐linked collagen membrane for guided bone regeneration at dehisced single implant sites: interim results of a bone augmentation procedure, Clinical Oral Implants Research, 28 (2017) e218-e226.
[3] D. Nilay Patel, Socket Preservation, Aiken Family Dentistry.
[4] 郭于甄, 以冷凍乾燥法製備生醫玻璃/幾丁聚醣複合支架與性質鑑定, 材料科學與工程系, 國立臺灣科技大學, 台北市, 2020, pp. 104.
[5] A. Ashman, Ridge preservation: important buzzwords in dentistry, General Dentistry, 48 (2000) 304-312.
[6] A. Oryan, S. Alidadi, A. Moshiri, N. Maffulli, Bone regenerative medicine: classic options, novel strategies, and future directions, Journal of Orthopaedic Surgery and Research, 9 (2014) 1-27.
[7] T. W. Bauer, G. F. Muschler, Bone graft materials: an overview of the basic science, Clinical Orthopaedics and Related Research®, 371 (2000) 10-27.
[8] N. K. Soldatos, P. Stylianou, V. P. Koidou, N. Angelov, R. Yukna, G. E. Romanos, Limitations and options using resorbable versus nonresorbable membranes for successful guided bone regeneration, Quintessence International, 48 (2017).
[9] R. Gutta, R. A. Baker, A. A. Bartolucci, P. J. Louis, Barrier membranes used for ridge augmentation: is there an optimal pore size?, Journal of Oral and Maxillofacial Surgery, 67 (2009) 1218-1225.
[10] T. Von Arx, B. Walkamm, N. Hardt, Localized ridge augmentation using a micro titanium mesh: a report on 27 implants followed from 1 to 3 vears after functional loading, Clinical Oral Implants Research, 9 (1998) 123-130.
[11] M. C. Bottino, V. Thomas, G. Schmidt, Y. K. Vohra, T. M. G. Chu, M. J. Kowolik, G. M. Janowski, Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective, Dental Materials, 28 (2012) 703-721.
[12] P. Bunyaratavej, H. L. Wang, Collagen membranes: a review, Journal of Periodontology, 72 (2001) 215-229.
[13] L. Laurell, J. Gottlow, Guided tissue regeneration update, International Dental Journal, 48 (1998) 386-398.
[14] N. Donos, L. Kostopoulos, T. Karring, Alveolar ridge augmentation using a resorbable copolymer membrane and autogenous bone grafts: an experimental study in the rat, Clinical Oral Implants Research, 13 (2002) 203-213.
[15] C. E. Misch, F. Dietsh, Bone-grafting materials in implant dentistry, Implant Dentistry, 2 (1993) 158-167.
[16] F. L. Ashley, R. S. Stone, M. Alonso Artieda, J. M. Syverud, J. W. Edwards, R. F. Sloan, S. A. Mooney, Experimental and clinical studies on the application of monomolecular cellulose filter, tubes to create artificial tendon sheaths in digits, Plastic and Reconstructive Surgery, 23 (1959) 526-534.
[17] T. P. Rüedi, C. A. L. Bassett, Repair and remodeling in Millipore-isolated defects in cortical bone, Cells Tissues Organs, 68 (1967) 509-531.
[18] I. Elgali, O. Omar, C. Dahlin, P. Thomsen, Guided bone regeneration: materials and biological mechanisms revisited, European Journal of Oral Sciences, 125 (2017) 315-337.
[19] A. Melcher, Role of the periosteum in repair of wounds of the parietal bone of the rat, Archives of Oral Biology, 14 (1969) 1101-IN1125.
[20] K. E. Kahnberg, Restoration of mandibular jaw defects in the rabbit by subperiosteally implanted Teflon® mantle leaf, International Journal of Oral Surgery, 8 (1979) 449-456.
[21] R. K. Schenk, D. Buser, W. R. Hardwick, C. Dahlin, Healing pattern of bone regeneration in membrane-protected defects: a histologic study in the canine mandible, International Journal of Oral & Maxillofacial Implants, 9 (1994).
[22] I. Rocchietta, F. Fontana, M. Simion, Clinical outcomes of vertical bone augmentation to enable dental implant placement: a systematic review, Journal of Clinical Periodontology, 35 (2008) 203-215.
[23] M. Retzepi, N. Donos, Guided bone regeneration: biological principle and therapeutic applications, Clinical Oral Implants Research, 21 (2010) 567-576.
[24] H. L. Wang, L. Boyapati, “PASS” principles for predictable bone regeneration, Implant Dentistry, 15 (2006) 8-17.
[25] P. A. Tran, Blood clots and tissue regeneration of 3D printed dual scale porous polymeric scaffolds, Materials Letters, 285 (2021) 129184.
[26] P. Kolar, K. Schmidt-Bleek, H. Schell, T. Gaber, D. Toben, G. Schmidmaier, C. Perka, F. Buttgereit, G.N. Duda, The early fracture hematoma and its potential role in fracture healing, Tissue Engineering Part B: Reviews, 16 (2010) 427-434.
[27] D. Lei, Y. Yang, Z. Liu, B. Yang, W. Gong, S. Chen, S. Wang, L. Sun, B. Song, H. Xuan, 3D printing of biomimetic vasculature for tissue regeneration, Materials Horizons, 6 (2019) 1197-1206.
[28] D. W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials, 21 (2000) 2529-2543.
[29] Z. Wang, C. Wang, C. Li, Y. Qin, L. Zhong, B. Chen, Z. Li, H. Liu, F. Chang, J. Wang, Analysis of factors influencing bone ingrowth into three-dimensional printed porous metal scaffolds: a review, Journal of Alloys and Compounds, 717 (2017) 271-285.
[30] N. Taniguchi, S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. Matsushita, T. Kokubo, S. Matsuda, Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment, Materials Science and Engineering: C, 59 (2016) 690-701.
[31] A. Cheng, A. Humayun, D. J. Cohen, B. D. Boyan, Z. Schwartz, Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner, Biofabrication, 6 (2014) 045007.
[32] J. E. Biemond, R. Aquarius, N. Verdonschot, P. Buma, Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology, Archives of Orthopaedic and Trauma Surgery, 131 (2011) 711-718.
[33] J. Lv, Z. Jia, J. Li, Y. Wang, J. Yang, P. Xiu, K. Zhang, H. Cai, Z. Liu, Electron beam melting fabrication of porous Ti6Al4V scaffolds: cytocompatibility and osteogenesis, Advanced Engineering Materials, 17 (2015) 1391-1398.
[34] H. Kido, E. E. Schulz, K. Kakura, K. Yamamoto, K. Morinaga, M. Matsuura, Human mandibular trabecular bone density correlation with mechanical strength: implications for implant dentistry, Implant Dentistry, 20 (2011) 323-326.
[35] C. E. Misch, Z. Qu, M. W. Bidez, Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement, Journal of Oral and Maxillofacial Surgery, 57 (1999) 700-706.
[36] E. Giesen, M. Ding, M. Dalstra, T. Van Eijden, Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic, Journal of Biomechanics, 34 (2001) 799-803.
[37] R. Parenteau-Bareil, R. Gauvin, F. Berthod, Collagen-based biomaterials for tissue engineering applications, Materials, 3 (2010) 1863-1887.
[38] B. Alberts, Molecular biology of the cell, Garland science, 2008.
[39] K. Gelse, E. Pöschl, T. Aigner, Collagens—structure, function, and biosynthesis, Advanced Drug Delivery Reviews, 55 (2003) 1531-1546.
[40] V. R. Sherman, W. Yang, M.A. Meyers, The materials science of collagen, Journal of the Mechanical Behavior of Biomedical Materials, 52 (2015) 22-50.
[41] B. G. Hudson, K. Tryggvason, M. Sundaramoorthy, E. G. Neilson, Alport's syndrome, Goodpasture's syndrome, and type IV collagen, New England Journal of Medicine, 348 (2003) 2543-2556.
[42] D. R. Keene, E. Engvall, R. W. Glanville, Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network, The Journal of Cell Biology, 107 (1988) 1995-2006.
[43] K. Kuhn, The collagen family: Variations in the molecular and super-molecular structure, Rheumatology, 10 (1986) 29-69.
[44] C. H. Lai, M. L. Chu, Tissue distribution and developmental expression of type XVI collagen in the mouse, Tissue and Cell, 28 (1996) 155-164.
[45] S. Radhakrishnan, S. Nagarajan, M. Bechelany, S.N. Kalkura, Collagen based biomaterials for tissue engineering applications: A review, Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature, (2020) 3-22.
[46] Z. Lin, Y. Tao, Y. Huang, T. Xu, W. Niu, Applications of marine collagens in bone tissue engineering, Biomedical Materials, 16 (2021) 042007.
[47] C. H. Lee, A. Singla, Y. Lee, Biomedical applications of collagen, International Journal of Pharmaceutics, 221 (2001) 1-22.
[48] S. E. Bloomfield, T. Miyata, M. W. Dunn, N. Bueser, K. H. Stenzel, A. L. Rubin, Soluble gentamicin ophthalmic inserts as a drug delivery system, Archives of Ophthalmology, 96 (1978) 885-887.
[49] M. L. Friedberg, U. Pleyer, B.J. Mondino, Device Drug Delivery to the Eye: Collagen Shield's, Iontophoresis, and Pumps, Ophthalmology, 98 (1991) 725-732.
[50] K. Panduranga Rao, Recent developments of collagen-based materials for medical applications and drug delivery systems, Journal of Biomaterials Science, Polymer Edition, 7 (1996) 623-645.
[51] T. Miyata, T. Taira, Y. Noishiki, Collagen engineering for biomaterial use, Clinical materials, 9 (1992) 139-148.
[52] T. Manon‐Jensen, N. Kjeld, M. Karsdal, Collagen‐mediated hemostasis, Journal of Thrombosis and Haemostasis, 14 (2016) 438-448.
[53] S. K. Sarkar, B. T. Lee, Hard tissue regeneration using bone substitutes: an update on innovations in materials, The Korean Journal of Internal Medicine, 30 (2015) 279.
[54] S. Yamada, H. Nagaoka, M. Terajima, N. Tsuda, Y. Hayashi, M. Yamauchi, Effects of fish collagen peptides on collagen post-translational modifications and mineralization in an osteoblastic cell culture system, Dental Materials Journal, 32 (2013) 88-95.
[55] A. Bernhardt, B. Paul, M. Gelinsky, Biphasic scaffolds from marine collagens for regeneration of osteochondral defects, Marine Drugs, 16 (2018) 91.
[56] G. Chen, L. Yang, Y. Lv, Cell‐free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model, Journal of Biomedical Materials Research Part A, 104 (2016) 833-841.
[57] R. Parodi, G. Carusi, G. Santarelli, F. Nanni, R. Pingitore, G. Brunel, Guided tissue regeneration employing a collagen membrane in a human periodontal bone defect: a histologic evaluation, International Journal of Periodontics & Restorative Dentistry, 17 (1997).
[58] H. L. Wang, K. Kiyonobu, R. F. Neiva, Socket augmentation: rationale and technique, Implant Dentistry, 13 (2004) 286-296.
[59] L. L. Hench, The story of Bioglass®, Journal of Materials Science: Materials in Medicine, 17 (2006) 967-978.
[60] J. R. Jones, Review of bioactive glass: from Hench to hybrids, Acta Biomaterialia, 9 (2013) 4457-4486.
[61] L. L. Hench, R. J. Splinter, W. Allen, T. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of Biomedical Materials Research, 5 (1971) 117-141.
[62] R. Li, A. Clark, L. Hench, An investigation of bioactive glass powders by sol‐gel processing, Journal of Applied Biomaterials, 2 (1991) 231-239.
[63] 藺莛恩, 不同矽含量生物活性玻璃對細胞毒性與生物活性影響之研究, 材料科學與工程系, 國立臺灣科技大學, 台北市, 2018, pp. 95.
[64] A. Hoppe, N. S. Güldal, A. R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials, 32 (2011) 2757-2774.
[65] D. Reffitt, N. Ogston, R. Jugdaohsingh, H. Cheung, B.A.J. Evans, R. Thompson, J. Powell, G. Hampson, Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro, Bone, 32 (2003) 127-135.
[66] E. M. Carlisle, Silicon: a possible factor in bone calcification, Science, 167 (1970) 279-280.
[67] S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, Y. Toyama, T. Taguchi, J. Tanaka, The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture, Biomaterials, 26 (2005) 4847-4855.
[68] M. Julien, S. Khoshniat, A. Lacreusette, M. Gatius, A. Bozec, E. F. Wagner, Y. Wittrant, M. Masson, P. Weiss, L. Beck, Phosphate‐dependent regulation of MGP in osteoblasts: Role of ERK1/2 and Fra‐1, Journal of Bone and Mineral Research, 24 (2009) 1856-1868.
[69] C. Gérard, L. J. Bordeleau, J. Barralet, C. J. Doillon, The stimulation of angiogenesis and collagen deposition by copper, Biomaterials, 31 (2010) 824-831.
[70] P. Marie, P. Ammann, G. Boivin, C. Rey, Mechanisms of action and therapeutic potential of strontium in bone, Calcified Tissue International, 69 (2001) 121.
[71] M. O’donnell, P. Candarlioglu, C. Miller, E. Gentleman, M. Stevens, Materials characterisation and cytotoxic assessment of strontium-substituted bioactive glasses for bone regeneration, Journal of Materials Chemistry, 20 (2010) 8934-8941.
[72] N. S. AboElsaad, M. Soory, L. M. Gadalla, L. I. Ragab, S. Dunne, K. R. Zalata, C. Louca, Effect of soft laser and bioactive glass on bone regeneration in the treatment of infra-bony defects (a clinical study), Lasers in Medical Science, 24 (2009) 387-395.
[73] P. Barve, What is tripple point?, Physicstuff, 2018
[74] P. Courtney, B. Forbes, P.G. Royall, A. Alqurshi, J. Strang, Freeze-dried formulations: a new perspective on reformulating naloxone, European Pharmaceutical Review, 22 (2017) 32-36.
[75] G. Assegehegn, E. Brito de la Fuente, J. M. Franco, C. Gallegos, The importance of understanding the freezing step and its impact on freeze-drying process performance, Journal of Pharmaceutical Sciences, 108 (2019) 1378-1395.
[76] S. L. Nail, S. Jiang, S. Chongprasert, S. A. Knopp, Fundamentals of freeze-drying, Development and Manufacture of Protein Pharmaceuticals, (2002) 281-360.
[77] J. C. Kasper, W. Friess, The freezing step in lyophilization: physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals, European Journal of Pharmaceutics and Biopharmaceutics, 78 (2011) 248-263.
[78] J. A. Searles, J. F. Carpenter, T. W. Randolph, The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature‐controlled shelf, Journal of Pharmaceutical Sciences, 90 (2001) 860-871.
[79] M. Pikal, S. Rambhatla, R. Ramot, The impact of the freezing stage in lyophilization: effects of the ice nucleation temperature on process design and product quality, American Pharmaceutical Review, 5 (2002) 48-53.
[80] S. Shukla, Freeze drying process: A review, International Journal of Pharmaceutical Sciences and Research, 2 (2011) 3061.
[81] H. Schoof, J. Apel, I. Heschel, G. Rau, Control of pore structure and size in freeze‐dried collagen sponges, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 58 (2001) 352-357.
[82] A. Autissier, C. Le Visage, C. Pouzet, F. Chaubet, D. Letourneur, Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process, Acta Biomaterialia, 6 (2010) 3640-3648.
[83] A. Sosnik, K.P. Seremeta, Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers, Advances in Colloid and Interface Science, 223 (2015) 40-54.
[84] X.V. Bui, T.H. Dang, Bioactive glass 58S prepared using an innovation sol-gel process, Processing and Application of Ceramics, 13 (2019) 98-103.
[85] 林佳緯, 利用雞皮生產膠原蛋白及生質柴油, 食品暨應用生物科技學系所, 國立中興大學, 台中市, 2015, pp. 100.
[86] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 26 (2005) 5474-5491.
[87] B.T. Goh, L.Y. Teh, D.B.P. Tan, Z. Zhang, S.H. Teoh, Novel 3 D polycaprolactone scaffold for ridge preservation–a pilot randomised controlled clinical trial, Clinical Oral Implants Research, 26 (2015) 271-277.
[88] T.J. Brunner, P. Wick, P. Manser, P. Spohn, R.N. Grass, L.K. Limbach, A. Bruinink, W.J. Stark, In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility, Environmental Science & Technology, 40 (2006) 4374-4381.
[89] Y. Jeong, D.W. Lim, J. Choi, Assessment of size-dependent antimicrobial and cytotoxic properties of silver nanoparticles, Advances in Materials Science and Engineering, 2014 (2014).
[90] R.A. Perez, G. Mestres, Role of pore size and morphology in musculo-skeletal tissue regeneration, Materials Science and Engineering: C, 61 (2016) 922-939.
[91] K. Zhang, Y. Fan, N. Dunne, X. Li, Effect of microporosity on scaffolds for bone tissue engineering, Regenerative Biomaterials, 5 (2018) 115-124.

無法下載圖示 全文公開日期 2024/07/13 (校內網路)
全文公開日期 2026/07/13 (校外網路)
全文公開日期 2026/07/13 (國家圖書館:臺灣博碩士論文系統)
QR CODE