簡易檢索 / 詳目顯示

研究生: 鄭凱鴻
KAI-HUNG CHENG
論文名稱: 含氯鈣鈦礦平面異質接面太陽能電池研究
The Study of Chlorine-incorporated Perovskite Planar Heterojunction Solar Cell
指導教授: 陳良益
Liang-Yih Chen
口試委員: 陳景翔
Ching-Hsiang Chen
吳季珍
Jih-Jen Wu
邱智瑋
Chih-Wei Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 108
中文關鍵詞: 平面結構鈣鈦礦太陽能電池二氧化鈦
外文關鍵詞: planar structure, perovskite, solar cells, titanium dioxide
相關次數: 點閱:245下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,經由研究發展出許多薄膜型太陽能電池。在這些薄膜型太陽能電池種類中,由於有機-無機鹵素鈣鈦礦材料具有高吸收係數以及適當的直接能隙(約為1.5 eV),可以有效地吸收太陽光來製作成具有高光電轉換效率太陽能電池。此外,有機-無機鹵素鈣鈦礦太陽能電池製造成本低與技術門檻不高,因此特別受到研究人員的重視。而在本研究中,為了有效地簡化有機-無機鹵素鈣鈦礦太陽能電池的製作,將以異質平面結構的方式進行此太陽能電池的製作與性質分析。此外,在有機-無機鹵素鈣鈦礦材料的鹵素元素成份方面,除了使用碘為陰離子之外,亦探討同時具有碘與氯離子時對太陽能電池性能的影響。而由分析的結果可知:在僅有碘離子的系統中,使用1.25 M的碘化鉛溶液與30 mg/mL的甲基胺碘溶液以兩步驟連續塗佈法將有機-無機鹵素鈣鈦礦材料沉積二氧化鈦緻密層時,可獲得太陽電池的光電轉換效率最佳值達14.01%。而在同時含有氯與碘離子的系統中,氯化鉛的濃度維持在1.25M時,甲基胺碘溶液必須提高至50 mg/mL,才可獲得較佳形態的有機-無機鹵素鈣鈦礦薄膜來進行太陽能電池的研究。在此條件下所獲得的最佳光電轉換效率可達16.31%。此外,在本研究中對於載子於有機-無機鹵素鈣鈦礦太陽能電池內的傳輸性質以及載子的傳遞性質,則使用交流阻抗頻譜與時間解析螢光光譜等技術進行分析。 


    In recent, many kinds of thin-film solar cells were developed. Among these thin-film solar cells, organic-inorganic halide perovskite (OIH-P) solar cells has been attracted by many researchers due to its high absorption coefficient, suitable bang gap (ca. 1.5 eV), low cost and simple preparation process. The high power conversion efficiency (PCE) solar cells could be made by OIH-P materials. In this study, a heterojunction planar structure was employed to construct OIH-P solar cells and to analyze their properties. In addition, the performance of OIH-P solar cells would be influenced by the composition of OIH-P. In this study, OIH-P layer containing iodide and chloride ions would be prepared and be assembled as solar cells. In iodide only system, lead iodide (PbI2) solution of 1.25 M and methylammium iodide (MAI) solution of 30 mg/mL were used to coat on the top of titanium dioxide thin film via two-step sequential process and the PCE value could achieve 14.01%. When OIH-P layer containing iodide and chloride ions, the concentration of lead chloride (PbCl2) solution maintained 1.25 M for used; however, the good morphology of OIH-P layer could be obtained by using 50 mg/mL MAI solution, which is higher than that used in iodide only system. In this system, the PCE value could achieve 16.31%. In addition, the carrier transport and transfer properties of OIH-P solar cells were studied by electrochemical impedance (EIS) and time-resolved photoluminescence (TRPL) techniques.

    中文摘要 I Abstract II 目錄 III 表目錄 VI 圖目錄 IX 第一章、 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章、 理論基礎與文獻回顧 4 2-1 半導體材料 4 2-1-1 pn接面 (pn junction) 6 2-2 鈣鈦礦材料 9 2-2-1 鈣鈦礦結構 (perovskite structure) 9 2-2-2 鈣鈦礦材料特性 9 2-2-2-1 能隙特性 9 2-2-2-2 離子遷移 (ionic migration) 12 2-2-2-3 鐵電效應 (ferroelectric polarization) 15 2-3 鈣鈦礦太陽能電池 (perovskite solar cell) 17 2-3-1 元件結構 17 2-3-2 鈣鈦礦太陽能電池結構種類 18 2-3-2-1 介孔型態結構 (mesoporous structure) 18 2-3-2-2 平面型態結構 (planar structure) 19 2-3-2-3 反向型態結構 (Inverted structure) 20 2-3-3 鈣鈦礦太陽能電池製作方法 21 2-3-3-1 一步驟沉積法 (one step solution deposition) 21 2-3-3-2 兩步驟溶液沉積法 (two step solution deposition) 22 2-3-3-3 氣相輔助溶液沉積法 (vapor-assisted solution process) 23 2-3-3-4 真空沉積法 (vaccum deposition) 23 2-3-4 磁滯效應 (hysteresis) 24 2-3-5 交流阻抗分析 26 2-3-5-1 原理 26 2-3-5-2 分析與等效電路擬合 29 2-3-5-3 鈣鈦礦太陽能電池EIS分析 30 第三章、 實驗方法與步驟 31 3-1 實驗流程簡圖 31 3-2 實驗藥品與設備儀器 32 3-2-1 實驗藥品 32 3-2-2 實驗設備 35 3-2-3 分析儀器 37 3-3 實驗步驟 42 3-3-1 定義工作面積及清洗基板 42 3-3-2 二氧化鈦緻密層 42 3-3-3 沉積鈣鈦礦吸光層 43 3-3-4 蒸鍍金屬電極 45 3-3-5 效率量測 46 第四章、 結果與討論 47 4-1 二氧化鈦緻密層 47 4-2 純碘鈣鈦礦太陽能電池 48 4-2-1 碘化鉛薄膜之表面型態與結晶 48 4-2-2 甲基胺碘溶液濃度對於鈣鈦礦薄膜形成之影響 52 4-2-3 分光效率光譜及時間解析螢光光譜 64 4-2-5交流阻抗頻譜分析(看過相關資料再修訂) 70 4-3 含氯鈣鈦礦太陽能電池 74 4-3-1 氯化鉛溶液濃度對氯化鉛薄膜表面型態與結晶之影響 74 4-3-2 甲基胺碘溶液濃度對鈣鈦礦薄膜之影響 78 4-3-3 分光效率光譜及時間解析螢光光譜 91 4-3-5交流阻抗頻譜分析 95 第五章、 結論 98 第六章、 參考文獻 99 附錄 107

    1. Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G., Nanoscale 2011, 3 (10), 4088-4093.
    2. Yin, W. J.; Shi, T.; Yan, Y., Advanced Materials 2014, 26 (27), 4653-4658.
    3. Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J., Nature Communications 2013, 4.
    4. Dianetti, M.; Di Giacomo, F.; Polino, G.; Ciceroni, C.; Liscio, A.; D'Epifanio, A.; Licoccia, S.; Brown, T.; Di Carlo, A.; Brunetti, F., Solar Energy Materials and Solar Cells 2015, 140, 150-157.
    5. You, J.; Hong, Z.; Yang, Y. M.; Chen, Q.; Cai, M.; Song, T.-B.; Chen, C.-C.; Lu, S.; Liu, Y.; Zhou, H., ACS Nano 2014.
    6. Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, U.; Spiccia, L.; Cheng, Y.-B., Journal of Materials Chemistry A 2015, 3 (15), 8139-8147.
    7. Warren, W. L.; Dimos, D.; Waser, R. M., MRS Bulletin 1996, 21 (07), 40-45.
    8. Yin, Y. T. Development of high power conversion efficiency ZnO-based photoanode to the application and analysis of dye-sensitized solar cell. Solar cell, National Taiwan University Science and Technology, 2016.
    9. Chiou, J.-W. Perovskite solar cell. Solar cell, National Taiwan University of Science and Technology, http://handle.ncl.edu.tw/11296/ndltd/57794764966117330445, 2015.
    10. Bhalla, A.; Guo, R.; Roy, R., Material Research Innovations 2000, 4 (1), 3-26.
    11. Dymshits, A.; Rotem, A.; Etgar, L., Journal of Materials Chemistry A 2014, 2 (48), 20776-20781.
    12. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E., Scientific Reports 2012, 2, 591.
    13. Shi, S.; Li, Y.; Li, X.; Wang, H., Materials Horizons 2015, 2 (4), 378-405.
    14. Cui, J.; Yuan, H.; Li, J.; Xu, X.; Shen, Y.; Lin, H.; Wang, M., Science and Technology of Advanced Materials 2016, 16.
    15. Chang, Y.; Park, C.; Matsuishi, K., Journal-Korean Physical Society 2004, 44, 889-893.
    16. Niemann, R. G.; Kontos, A. G.; Palles, D.; Kamitsos, E. I.; Kaltzoglou, A.; Brivio, F.; Falaras, P.; Cameron, P. J., The Journal of Physical Chemistry C 2016.
    17. Liu, J.; Lin, J.; Xue, Q.; Ye, Q.; He, X.; Ouyang, L.; Zhuang, D.; Liao, C.; Yip, H.-L.; Mei, J., Journal of Power Sources 2016, 301, 242-250.
    18. Suarez, B.; Gonzalez-Pedro, V.; Ripolles, T. S.; Sanchez, R. S.; Otero, L.; Mora-Sero, I., The Journal of Physical Chemistry Letters 2014, 5 (10), 1628-1635.
    19. Brauer, J. C.; Lee, Y. H.; Nazeeruddin, M. K.; Banerji, N., The Journal of Physical Chemistry Letters 2015, 6 (18), 3675-3681.
    20. Richardson, G.; O'Kane, S. E.; Niemann, R. G.; Peltola, T. A.; Foster, J. M.; Cameron, P. J.; Walker, A. B., Energy & Environmental Science 2016, 9, 1476-1485.
    21. Liu, J.; Wu, Y.; Qin, C.; Yang, X.; Yasuda, T.; Islam, A.; Zhang, K.; Peng, W.; Chen, W.; Han, L., Energy & Environmental Science 2014, 7 (9), 2963-2967.
    22. Eames, C.; Frost, J. M.; Barnes, P. R.; O’regan, B. C.; Walsh, A.; Islam, M. S., Nature Communications 2015, 6.
    23. Yuan, Y.; Huang, J., Accounts of Chemical Research 2016, 49 (2), 286-293.
    24. Colella, S.; Mosconi, E.; Fedeli, P.; Listorti, A.; Gazza, F.; Orlandi, F.; Ferro, P.; Besagni, T.; Rizzo, A.; Calestani, G., Chemistry of Materials 2013, 25 (22), 4613-4618.
    25. Meloni, S.; Moehl, T.; Tress, W.; Franckevičius, M.; Saliba, M.; Lee, Y. H.; Gao, P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Rothlisberger, U., Nature Communications 2016, 7.
    26. Ponseca Jr, C. S.; Hutter, E. M.; Piatkowski, P.; Cohen, B.; Pascher, T. r.; Douhal, A.; Yartsev, A.; Sundström, V.; Savenije, T. J., Journal of the American Chemical Society 2015, 137 (51), 16043-16048.
    27. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y., Journal of the American Chemical Society 2013, 136 (2), 622-625.
    28. Guarnera, S.; Abate, A.; Zhang, W.; Foster, J. M.; Richardson, G.; Petrozza, A.; Snaith, H. J., The Journal of Physical Chemistry Letters 2015, 6 (3), 432-437.
    29. Chen, H.-W.; Sakai, N.; Ikegami, M.; Miyasaka, T., The Journal of Physical Chemistry Letters 2014, 6 (1), 164-169.
    30. Kim, H.-S.; Kim, S. K.; Kim, B. J.; Shin, K.-S.; Gupta, M. K.; Jung, H. S.; Kim, S.-W.; Park, N.-G., The Journal of Physical Chemistry Letters 2015, 6 (9), 1729-1735.
    31. Fan, Z.; Xiao, J.; Sun, K.; Chen, L.; Hu, Y.; Ouyang, J.; Ong, K. P.; Zeng, K.; Wang, J., The Journal of Physical Chemistry Letters 2015, 6 (7), 1155-1161.
    32. Heo, J. H.; Im, S. H., Nanoscale 2016, 8, 2554-2560.
    33. Xiao, Z.; Yuan, Y.; Shao, Y.; Wang, Q.; Dong, Q.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J., Nature Materials 2015, 14 (2), 193-198.
    34. Yan, W.; Li, Y.; Sun, W.; Peng, H.; Ye, S.; Liu, Z.; Bian, Z.; Huang, C., RSC Advances 2014, 4 (62), 33039-33046.
    35. (a) Zhou, H.; Shi, Y.; Dong, Q.; Zhang, H.; Xing, Y.; Wang, K.; Du, Y.; Ma, T., The Journal of Physical Chemistry Letters 2014, 5 (18), 3241-3246; (b) Zhou, Y.; Yang, M.; Vasiliev, A. L.; Garces, H. F.; Zhao, Y.; Wang, D.; Pang, S.; Zhu, K.; Padture, N. P., Journal of Materials Chemistry A 2015, 3 (17), 9249-9256.
    36. BestResearch-CellEfficiencies. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
    37. Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M., Journal of the American Chemical Society 2012, 134 (42), 17396-17399.
    38. Unger, E.; Hoke, E.; Bailie, C.; Nguyen, W.; Bowring, A.; Heumüller, T.; Christoforo, M.; McGehee, M., Energy & Environmental Science 2014, 7 (11), 3690-3698.
    39. Zhao, Y.; Nardes, A. M.; Zhu, K., The Journal of Physical Chemistry Letters 2014, 5 (3), 490-494.
    40. Yamada, Y.; Nakamura, T.; Endo, M.; Wakamiya, A.; Kanemitsu, Y., Applied Physics Express 2014, 7 (3), 032302.
    41. Li, H.; Cao, K.; Cui, J.; Liu, S.; Qiao, X.; Shen, Y.; Wang, M., Nanoscale 2016, 8 (12), 6379-6385.
    42. Roiati, V.; Mosconi, E.; Listorti, A.; Colella, S.; Gigli, G.; De Angelis, F., Nano Letters 2014, 14 (4), 2168-2174.
    43. Wang, L.; McCleese, C.; Kovalsky, A.; Zhao, Y.; Burda, C., Journal of the American Chemical Society 2014, 136 (35), 12205-12208.
    44. Wang, Q.; Shao, Y.; Dong, Q.; Xiao, Z.; Yuan, Y.; Huang, J., Energy & Environmental Science 2014, 7 (7), 2359-2365.
    45. Wehrenfennig, C.; Liu, M.; Snaith, H. J.; Johnston, M. B.; Herz, L. M., The Journal of Physical Chemistry Letters 2014, 5 (8), 1300-1306.
    46. Wei, Z.; Chen, H.; Yan, K.; Yang, S., Angewandte Chemie 2014, 126 (48), 13455-13459.
    47. Dong, X.; Hu, H.; Lin, B.; Ding, J.; Yuan, N., Chemical Communications 2014, 50 (92), 14405-14408.
    48. Son, D.-Y.; Im, J.-H.; Kim, H.-S.; Park, N.-G., The Journal of Physical Chemistry C 2014, 118 (30), 16567-16573.
    49. Yang, J.; Siempelkamp, B. D.; Mosconi, E.; De Angelis, F.; Kelly, T. L., Chemistry of Materials 2015, 27 (12), 4229-4236.
    50. Zhou, H.; Shi, Y.; Wang, K.; Dong, Q.; Bai, X.; Xing, Y.; Du, Y.; Ma, T., The Journal of Physical Chemistry C 2015, 119 (9), 4600-4605.
    51. Carnie, M. J.; Charbonneau, C.; Davies, M. L.; Troughton, J.; Watson, T. M.; Wojciechowski, K.; Snaith, H.; Worsley, D. A., Chemical Communications 2013, 49 (72), 7893-7895.
    52. Cao, C.; Zhang, C.; Yang, J.; Sun, J.; Pang, S.; Wu, H.; Wu, R.; Gao, Y.; Liu, C., Chemistry of Materials 2016.
    53. Hu, L.; Peng, J.; Wang, W.; Xia, Z.; Yuan, J.; Lu, J.; Huang, X.; Ma, W.; Song, H.; Chen, W., ACS Photonics 2014, 1 (7), 547-553.
    54. Jeng, J. Y.; Chen, K. C.; Chiang, T. Y.; Lin, P. Y.; Tsai, T. D.; Chang, Y. C.; Guo, T. F.; Chen, P.; Wen, T. C.; Hsu, Y. J., Advanced Materials 2014, 26 (24), 4107-4113.
    55. Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C., Advanced Materials 2013, 25 (27), 3727-3732.
    56. Li, Y.; Cooper, J. K.; Buonsanti, R.; Giannini, C.; Liu, Y.; Toma, F. M.; Sharp, I. D., The Journal of Physical Chemistry Letters 2015, 6 (3), 493-499.
    57. Pellegrino, G.; Colella, S.; Deretzis, I.; Condorelli, G. G.; Smecca, E.; Gigli, G.; La Magna, A.; Alberti, A., The Journal of Physical Chemistry C 2015, 119 (34), 19808-19816.
    58. Song, X.; Wang, W.; Sun, P.; Ma, W.; Chen, Z.-K., Applied Physics Letters 2015, 106 (3), 033901.
    59. Chen, Y.; Chen, T.; Dai, L., Advanced Materials 2015, 27 (6), 1053-1059.
    60. Pascoe, A. R.; Duffy, N. W.; Scully, A. D.; Huang, F.; Cheng, Y.-B., The Journal of Physical Chemistry C 2015, 119 (9), 4444-4453.
    61. Bai, S.; Wu, Z.; Wu, X.; Jin, Y.; Zhao, N.; Chen, Z.; Mei, Q.; Wang, X.; Ye, Z.; Song, T., Nano Research 2014, 7 (12), 1749-1758.
    62. Lindblad, R.; Bi, D.; Park, B.-w.; Oscarsson, J.; Gorgoi, M.; Siegbahn, H.; Odelius, M.; Johansson, E. M.; Rensmo, H. k., The Journal of Physical Chemistry Letters 2014, 5 (4), 648-653.
    63. Supasai, T.; Rujisamphan, N.; Ullrich, K.; Chemseddine, A.; Dittrich, T., Applied Physics Letters 2013, 103 (18), 183906.
    64. Zuo, L.; Gu, Z.; Ye, T.; Fu, W.; Wu, G.; Li, H.; Chen, H., Journal of the American Chemical Society 2015, 137 (7), 2674-2679.
    65. Bai, Y.; Yu, H.; Zhu, Z.; Jiang, K.; Zhang, T.; Zhao, N.; Yang, S.; Yan, H., Journal of Materials Chemistry A 2015, 3 (17), 9098-9102.
    66. Chiang, C.-H.; Tseng, Z.-L.; Wu, C.-G., Journal of Materials Chemistry A 2014, 2 (38), 15897-15903.
    67. Kim, H.-B.; Choi, H.; Jeong, J.; Kim, S.; Walker, B.; Song, S.; Kim, J. Y., Nanoscale 2014, 6 (12), 6679-6683.
    68. Kyaw, A. K. K.; Wang, D. H.; Gupta, V.; Zhang, J.; Chand, S.; Bazan, G. C.; Heeger, A. J., Advanced Materials 2013, 25 (17), 2397-2402.
    69. Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G., Journal of the American Chemical Society 2015, 137 (27), 8696-8699.
    70. Im, J.-H.; Kim, H.-S.; Park, N.-G., Apl Materials 2014, 2 (8), 081510.
    71. Salim, T.; Sun, S.; Abe, Y.; Krishna, A.; Grimsdale, A. C.; Lam, Y. M., Journal of Materials Chemistry A 2015, 3 (17), 8943-8969.
    72. Song, D.-h.; Heo, J. H.; Han, H. J.; You, M. S.; Im, S. H., Journal of Power Sources 2016, 310, 130-136.
    73. Wang, D.; Liu, Z.; Zhou, Z.; Zhu, H.; Zhou, Y.; Huang, C.; Wang, Z.; Xu, H.; Jin, Y.; Fan, B., Chemistry of Materials 2014, 26 (24), 7145-7150.
    74. Yantara, N.; Yanan, F.; Shi, C.; Dewi, H. A.; Boix, P. P.; Mhaisalkar, S. G.; Mathews, N., Chemistry of Materials 2015, 27 (7), 2309-2314.
    75. Yu, H.; Wang, F.; Xie, F.; Li, W.; Chen, J.; Zhao, N., Advanced Functional Materials 2014, 24 (45), 7102-7108.
    76. Umeyama, T.; Matano, D.; Baek, J.; Gupta, S.; Ito, S.; Subramanian, V.; Imahori, H., Chemistry Letters 2015, 44 (10), 1410-1412.
    77. Bi, D.; Moon, S.-J.; Häggman, L.; Boschloo, G.; Yang, L.; Johansson, E. M.; Nazeeruddin, M. K.; Grätzel, M.; Hagfeldt, A., Rsc Advances 2013, 3 (41), 18762-18766.
    78. Huang, J.; Wang, M.; Ding, L.; Deng, J.; Yao, X., Semiconductor Science and Technology 2015, 31 (2), 025009.
    79. Liu, D.; Wu, L.; Li, C.; Ren, S.; Zhang, J.; Li, W.; Feng, L., ACS Applied Materials & Interfaces 2015, 7 (30), 16330-16337.
    80. Shi, J.; Luo, Y.; Wei, H.; Luo, J.; Dong, J.; Lv, S.; Xiao, J.; Xu, Y.; Zhu, L.; Xu, X., ACS Applied Materials & Interfaces 2014, 6 (12), 9711-9718.
    81. Xu, Y.; Zhu, L.; Shi, J.; Lv, S.; Xu, X.; Xiao, J.; Dong, J.; Wu, H.; Luo, Y.; Li, D., ACS Applied Materials & Interfaces 2015, 7 (4), 2242-2248.
    82. Liang, K.; Mitzi, D. B.; Prikas, M. T., Chemistry of Materials 1998, 10 (1), 403-411.
    83. Hu, H.; Wang, D.; Zhou, Y.; Zhang, J.; Lv, S.; Pang, S.; Chen, X.; Liu, Z.; Padture, N. P.; Cui, G., RSC Advances 2014, 4 (55), 28964-28967.
    84. Chen, C. W.; Kang, H. W.; Hsiao, S. Y.; Yang, P. F.; Chiang, K. M.; Lin, H. W., Advanced Materials 2014, 26 (38), 6647-6652.
    85. Xie, F. X.; Zhang, D.; Su, H.; Ren, X.; Wong, K. S.; Grätzel, M.; Choy, W. C., ACS Nano 2015, 9 (1), 639-646.
    86. Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., Energy & Environmental Science 2015, 8 (5), 1602-1608.
    87. Jena, A. K.; Chen, H.-W.; Kogo, A.; Sanehira, Y.; Ikegami, M.; Miyasaka, T., ACS Applied Materials & Interfaces 2015, 7 (18), 9817-9823.
    88. Kim, H.-S.; Park, N.-G., The Journal of Physical Chemistry Letters 2014, 5 (17), 2927-2934.
    89. Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T.-W.; Wojciechowski, K.; Zhang, W., The Journal of Physical Chemistry Letters 2014, 5 (9), 1511-1515.
    90. Stumpp, M.; Ruess, R.; Horn, J.; Tinz, J.; Richter, C.; Schlettwein, D., Physica Status Solidi (a) 2016, 213 (1), 38-45.
    91. Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S.; Nazeeruddin, M. K.; Grätzel, M., Energy & Environmental Science 2015, 8 (3), 995-1004.
    92. JHU, W. C. The Study of Quantum Dot Sensitized Solar Cell by Titanium Dioxide Composite Photoanode. Solar cell, National Taiwan University of Science and Technology, http://handle.ncl.edu.tw/11296/ndltd/24475994873366978883, 2011.
    93. Jin, Y.; Chumanov, G., ACS Applied Materials & Interfaces 2015, 7 (22), 12015-12021.
    94. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J., Science 2013, 342 (6156), 341-344.
    95. Du, T.; Wang, N.; Chen, H.; Lin, H.; He, H., ACS Applied Materials & Interfaces 2015, 7 (5), 3382-3388.

    無法下載圖示 全文公開日期 2021/08/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE