簡易檢索 / 詳目顯示

研究生: 黃政穎
Cheng-Ying Huang
論文名稱: 使用仲鎢酸銨作為化學氣相沉積法之前驅物生長二維單層二硫化鎢之研究
Synthesis of Two-Dimensional Monolayer WS2 Using Ammonium Paratungstate as Novel precursor
指導教授: 蔡孟霖
Meng-Lin Tsai
口試委員: 蔡東昇
Dung-Sheng Tsai
柯文政
Wen-Cheng Ke
楊伯康
Po-Kang Yang
李權倍
Chuan-Pei Lee
蔡孟霖
Meng-Lin Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 96
中文關鍵詞: 二維材料二硫化鎢仲鎢酸銨化學氣相沉積法
外文關鍵詞: 2D materials, ammonium paratungstate, tungsten disulfide, chemical vapor deposition
相關次數: 點閱:687下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

自2004年石墨烯被證實能單獨穩定的存在於自然界中,為世人開啟了名為二維材料領域的序幕,而擁有半導體能隙特性的過渡金屬二硫族化物(Transition Metal Dichalcogenides)包括二硫化鉬、二硒化鎢等其他類似結構及特性的材料,具有材料在單層及多層上特性明顯之差異、多元的材料選擇、可調控之載子遷移率、可撓性、透光性、易整合於電子裝置等特性,因這些特性使該材料在未來的電子和光電應用中展現出巨大的潛力。在本文中我們的實驗以二硫化鎢為主要研究對象,在化學氣相沉積生長二維二硫化鎢的方法中,三氧化鎢粉末是較為廣泛地被使用的前驅物。但是由於鎢-氧鍵的高度穩定性,使得三氧化鎢需提供非常高的溫度來產生足夠的前驅物蒸氣作為生長過程的鎢來源。在本文中,我們選擇了仲鎢酸銨(ammonium paratungstate, APT),一種鎢礦提煉的初級產物,常用於精煉成高純度三氧化鎢或工業常見的藍色或紫色氧化鎢,作為本文所使用的二硫化鎢一步驟合成法的替代前驅物。在先前的研究中通常以高純度的三氧化鎢或藍色氧化鎢作為前驅物,而使用仲鎢酸銨作為前驅物可以節省使用其他前驅物在製備上所消耗的能量和浪費。本文中使用仲鎢酸銨作為前驅物可於一步驟製程中進行前驅物的熱分解及合成二維二硫化鎢樣品,並透過原子力顯微鏡,拉曼光譜和光致發光光譜來證實樣品為單層,而在參數優化的樣品中最大的晶粒尺寸可達到24 µm。艾克斯射線數據的結果表明,仲鎢酸銨最終形成較穩定的低化學劑量比氧化鎢如紫鎢(WO2.72),這是仲鎢酸銨在熱分解中可提供生成二氧化鎢之前驅物的證據之一。在初期樣品合成中不僅有三角形晶粒亦會存在奈米線,而在後續的實驗中證實樣品中所生長的奈米線是前驅物的結晶,並找出可以控制的奈米線形成的方法。最後,與先前的研究相比,我們提供了一種新的前驅物選擇,可節省生產高純度前驅物過程所需的能量並降低成本,可以用於未來大規模的生產。

關鍵字:二維材料、仲鎢酸銨、化學氣相沉積、二硫化鎢


Two-dimensional layered materials have attracted much attention due to their unique electronic, optoelectronic, thermal, and mechanical properties. The existence of a semiconductor bandgap in transitional metal dichalcogenides including MoS2, WS2, MoSe2, and WSe2 with transformation from indirect to direct bandgaps when scaling down to the monolayer provide great potential for the development of future electronics and optoelectronics applications. In the case of WS2, WO3 and S powders have been most widely used as precursors for the chemical vapor deposition growth. However, WO3 cannot be directly sulfurized by sulfur due to the highly stable W-O bonding in the process of WS2 growth. Therefore, WO3 should be initially reduced into intermediates-WO3-x to facilitate the growth procedure. In this work, we have selected ammonium paratungstate (APT) - the primary raw material for the extraction of WO3, as an alternative precursor to synthesize WS2 via one-step process. Compared to WO3, the amount of APT and process complexity are both significantly reduced through the synthesis of WS2. The x-ray diffraction data result shows that most of APT ultimately form WO3-x, which plays an important role in the growth of WS2. In addition, monolayer triangular WS2 flakes have been successfully grown and confirmed by atomic force microscope profiles, Raman spectra, and photoluminescence spectra. In contrast to previous studies, we have successfully synthesized large area monolayer triangular flakes without the assistance of salts, seed particles, and hydrogen. As a result, the growth process reported herein provides a practical and feasible solution for low-cost and efficient synthesis of WS2 for future mass production.

Keywords: 2D materials, ammonium paratungstate, chemical vapor deposition, tungsten disulfide

摘要 Abstract 誌謝 圖目錄 表目錄 第一章、序論 1.1 前言 1.2 研究動機與目的 第二章、文獻探討 2.1 過渡金屬硫族化物的晶體結構和性質 2.2 過渡金屬硫族化物的光學性質 2.2.1 過渡金屬硫族化物的光激螢光光譜分析 2.2.2 過渡金屬硫族化物的拉曼光譜分析 2.3 過渡金屬硫族化物的表面形貌分析 2.4 過渡金屬硫族化物的製備方法 2.4.1 剝離法(Exfoliation) 2.4.2 高溫分解法(Thermal decomposition) 2.4.3 鉬基氧化物的硫化法(Sulfurization of Mo based oxides) 2.4.4 氣相-固相成長(Vapor-solid growth) 2.4.5 化學氣相沉積法(Chemical vapor deposition) 2.5 二維材料的轉移製程 2.5.1 聚甲基丙烯酸甲酯(PMMA)的濕式轉移製程 2.6 過渡金屬硫族化物的元件應用 2.6.1 電晶體 2.6.2 光電元件 2.6.3 壓電元件 2.7 仲鎢酸銨(Ammonium Paratungstate, APT)介紹 2.7.1 鎢基化合物與冶金技術發展 2.7.2 現代鎢冶金過程介紹及仲鎢酸銨製備 2.7.3 仲鎢酸銨的性質與熱分解歷程 第三章、實驗方法與分析儀器 3.1 實驗流程 3.1.1 基板清洗 3.1.2 化學氣相沉積製程 3.2 實驗設備與分析儀器 3.2.1 實驗設備 3.2.2 分析儀器 第四章、結果與討論 4.1 仲鎢酸銨在高溫製程中的分解行為與實驗的可行性 4.2 以仲鎢酸銨為前驅物製備二維二硫化鎢性質探討 4.2.1 仲鎢酸銨熱分解驗證 4.2.2 樣品光學分析 4.2.3 樣品原子力顯微鏡分析 4.3 樣品生長參數討論與最佳化 4.3.1 實驗初期參數調整組 4.3.2 晶粒尺寸生長與反應沉積位置討論 4.3.3 奈米線分析 4.3.4 去除奈米線實驗 4.3.5 實驗結果討論與小結 第五章、結論 參考文獻

[1] 摩爾定律-維基百科,取自https://en.wikipedia.org/wiki/Transistor_count#/
media/File:Moore's_Law_Transistor_Count_1971-2018.png
[2] K. S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[3] A. K. Geim et al., Van der Waals heterostructures. Nature 2013, 499, 419.
[4] J. Gusakova et al., Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework (GVJ‐2e method). Physica Status Solidi (a) 2017, 214, 1700218.
[5] A. Kuc et al., The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields. Chemical Society Reviews 2015, 44, 2603-2614.
[6] K. F. Mak et al., Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters 2010, 105, 136805.
[7] Q. H. Wang et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology 2012, 7, 699-712.
[8] M. Chhowalla et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry 2013, 5, 263-275.
[9] Y. H. Lee et al., Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Letters 2013, 13, 1852-1857.
[10] S. Najmaei et al., Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Materials 2013, 12, 754-759.
[11] V. D. Zande et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Materials 2013, 12, 554-561.
[12] A. Radenovic et al., Single-layer MoS2 transistors. Nature Nanotechnology 2011, 6, 147-150.
[13] B. Radisavljevic et al., Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934-9938.
[14] Z. Yin et al., Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74-80.
[15] R. Sundaram et al., Electroluminescence in single layer MoS2. Nano Letters 2013, 13, 1416-1421.
[16] S. Zhang et al., Recent progress in 2D group-VA semiconductors: from theory to experiment. Chemical Society Reviews 2018, 47, 982-1021.
[17] W. Zhou et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano Letters 2013, 13, 2615-2622.
[18] H. Qiu et al., Hopping transport through defect-induced localized states in molybdenum disulphide. Nature Communications 2013, 4, 1-6.
[19] Y. Gao et al., Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nature Communications 2015, 6, 1-10.
[20] S. Manzeli et al., 2D transition metal dichalcogenides. Nature Reviews Materials 2017, 2, 17033.
[21] 網路免費圖片提供,1T相的原子配位示意圖,取自https://www.freepng.es/
png-84zlky/download.html.
[22] R. J. Toh et al., 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chemical Communications 2017, 53, 3054-3057.
[23] H. R. Gutiérrez et al., Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Letters 2013, 13, 3447-3454.
[24] 二硫化鎢-維基百科,取自https://en.wikipedia.org/wiki/Tungsten_disulfide

[25] A. Splendiani et al., Emerging photoluminescence in monolayer MoS2. Nano Letters 2010, 10, 1271-1275.
[26] K. F. Mak et al., Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters 2010, 105, 136805.
[27] H. Zeng et al., Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Scientific Reports 2013, 3, 1608.
[28] C. Lee et al., Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.
[29] W. Zhao et al., Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677-9683.
[30] Z. Liu et al., 2D nanomeshes, and 2D in-plane films through one single chemical vapor deposition route. ACS Nano 2019, 13, 3896-3909.
[31] H. Liu et al., Fluorescence concentric triangles: a case of chemical heterogeneity in WS2 atomic monolayer. Nano Letters 2016, 16, 5559-5567.
[32] Y. Zhang et al., Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963-8971.
[33] H. Liu et al., Towards large area and continuous MoS2 atomic layers via vapor-phase growth: thermal vapor sulfurization. Nanotechnology 2014, 25, 405702.
[34] H. Li et al., Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Accounts of Chemical Research 2014, 47, 1067-1075.
[35] Z. Zeng et al., Single‐layer semiconducting nanosheets: High‐yield preparation and device fabrication. Angewandte Chemie 2011, 123, 11289-11293.

[36] K. K. Liu et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Letters 2012, 12, 1538-1544.
[37] Y. Zhan et al., Large‐area vapor‐phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966-971.
[38] Y. C. Lin et al., Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 2012, 4, 6637-6641.
[39] S. Wu et al., Vapor–solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 2013, 7, 2768-2772.
[40] L. J. Lee et al., Synthesis of large‐area MoS2 atomic layers with chemical vapor deposition. Advanced Materials 2012, 24, 2320-2325.
[41] A. Reina et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters 2009, 9, 30-35.
[42] X. Wang et al., Location-specific growth and transfer of arrayed MoS2 monolayers with controllable size. 2D Materials 2017, 4, 025093.
[43] A. Kis et al., Single-layer MoS2 transistors. Nature Nanotechnology 2011, 6, 147-150.
[44] R. Ganatra et al., Few-layer MoS2: a promising layered semiconductor. ACS Nano 2014, 8, 4074-4099.
[45] J. Kumar et al., Full-range electrical characteristics of WS2 transistors. Applied Physics Letters 2015, 106 , 123508.
[46] L. J. Lee et al., High‐gain phototransistors based on a CVD MoS2 monolayer. Advanced Materials 2013, 25, 3456-3461.
[47] C. Ataca et al., Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. The Journal of Physical Chemistry C 2012, 116, 8983-8999.
[48] W. Wu et al., Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470-474.
[49] 李洪桂。鎢冶金學。中南大學出版社,2002。
[50] 仲鎢酸銨市場統計-Argus Media Ltd, 2018,取自https://www.
tungstenmining.com/wp-content/uploads/2018/08/TGN-180807-Corporate-Presentation_August-2018-final_ASX.pdf
[51] 劉士軍。單斜仲鎢酸銨熱分解的熱化學測定。物理化學學報,2000,16,1048-1052。
[52] J. W. Van Put et al., Crystallisation and processing of ammonium paratungstate (APT). The Chemistry of Non-Sag Tungsten 1995, pp. 61-76.
[53] M. Fait et al., Thermal decomposition of ammonium paratungstate tetrahydrate under non-reducing conditions: characterization by thermal analysis, X-ray diffraction and spectroscopic methods. Thermochimica Acta 2008, 469, 12-22.
[54] J. Madarász et al., Comparative evolved gas analyses (TG-FTIR, TG/DTA-MS) and solid state (FTIR, XRD) studies on thermal decomposition of ammonium paratungstate tetrahydrate (APT) in air. Journal of Analytical and Applied Pyrolysis 2004, 72, 197-201.
[55] S. Mohebi et al., Evaluation of enamel surface roughness after orthodontic bracket debonding with atomic force microscopy. American Journal of Orthodontics and Dentofacial Orthopedics 2017, 151, 521-527.
[56] J. Zhou et al., A library of atomically thin metal chalcogenides. Nature 2018, 556, 355-359.
[57] Z. Liu et al., WS2 nanotubes, 2D nanomeshes, and 2D in-plane films through one single chemical vapor deposition route. ACS Nano 2019, 13, 3896-3909.

[58] T. Han et al., Probing the optical properties of MoS2 on SiO2/Si and sapphire substrates. Nanomaterials 2019, 9, 740.
[59] Y. Lee et al., Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale 2015, 7, 7402-7408.

無法下載圖示 全文公開日期 2025/08/05 (校內網路)
全文公開日期 2025/08/05 (校外網路)
全文公開日期 2025/08/05 (國家圖書館:臺灣博碩士論文系統)
QR CODE