簡易檢索 / 詳目顯示

研究生: 蘇育霆
Yu-Ting Su
論文名稱: 可見光至近紅外波段高光譜影像儀微型化之優化設計
Optimal Design of a Micro-Hyperspectrometer in Visible and Near Infrared Band
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 徐勝均
Sheng-Dong Xu
沈志霖
Ji-Lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 136
中文關鍵詞: 可見光至近紅外光譜儀光譜解析度半高全寬聚焦縱深
外文關鍵詞: VNIR, Hyper spectrometer, Spectral resolution, Full width at half maximum, Depth of focus
相關次數: 點閱:188下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究欲設計波段400-1000 nm Offner形式的可見光波段微型光譜影像儀,將光譜儀的體積大幅縮小,使光譜儀增加攜帶的方便性,亦降低光譜儀的製作成本。並利用市售的光學機構、元件組裝進行初步的系統設計與成像斑點分析。
    首先利用光學/成像系統設計分析軟體 CODE V 進行初步的系統模型設計,為了要降低製造成本,藉由光柵刻度間距的調變以符合市售光學元件,並利用 550 nm 作為優化波長使成像斑點逼近繞射極限。最終所確定的凹球面鏡曲率半徑為 50 mm,光柵間距為3.95 μm,整體Offner系統大小為 50 mm × 70 mm × 50 mm。
    接著利用光線追跡軟體 TracePro進行真實情況的模擬,並驗證 CODE V 設計之結果的一致性。結果顯示,CODE V 所設計之系統結果與TracePro 點光源搭配底片規格之結果近似,最佳總光譜解析度約為 0.35-1.3 nm,最佳總影像解析度約為 1.33 μm;模擬真實成像情形,利用狹縫光源搭配偵測器規格之結果,最佳總光譜解析度約為 2.84-3.24 nm,最佳總影像解析度約為 18.78-19.25 μm,與加上前級光學系統的CODE V光譜總解析度近乎相同。
    為考慮光柵分光之反射效率,因此利用PCGrate進行可見光至近紅外波段每個波長的分析,結果顯示在波長 550 nm 時,具有最高的反射效率約為83%,因此挑選550 nm作為光柵閃耀角的設計參數。
    後續利用 SolidWorks模擬各元件之間組裝以判別干涉與系統的可行性,並進行各光學元件之間容差分析、評估閃耀光柵公差造成的繞射效率模擬。以調置偵測器擺放位置為前提,該光學系統垂直方向容許誤差為2 mm,水平方向容許誤差為1 mm;以固定偵測器擺放位置為前提,垂直方向位移容差Mirror A、光柵、Mirror B分別可達 0.15 mm、0.3 mm、0.2 mm,水平方向位移容差Mirror A、光柵、Mirror B分別可達 0.06 mm、0.08 mm、0.01 mm。


    The propose of this study is to design a Offner miniature spectral imager which band is 400-1000 nm. This will miniature spectrometer’s volume and increase portability. Also, decrease manufacturing cost of spectrometer. And use optics component on sales to simulate system design and imaging analysis.
    First, use Optics and imaging system design analysis software CODE V to design system model. In order to decrease manufacturing cost, adjust spacing of grating to match optics component on sales. And let the imaging spot approach to diffraction limit by using wavelength 550 nm as optimization band. Finally, radius of the concave mirror is 50 mm, spacing of the grating is 3.95 μm, the Offner system size is 50 mm × 70 mm × 50 mm.
    TracePro is used to simulate realistic imaging situation, and verify preliminary system design result of CODE V. The result show preliminary design is almost the same as point source with film specification in TracePro. The total spectral resolution of 0.5-1.8 nm and an image resolution of 5-7 μm. The realistic imaging situation, the result which using slit source with detector specification in TracePro show total spectral resolution of 3.1-13.5 nm and an image resolution of 22-45 μm.
    In order to consider reflectance efficiency of the grating, PCGrate is used to simulate band of VNIR, the result show have most reflectance efficiency at 550 nm. Hence, select 550 nm as design parameter of grating blaze angle.
    Finally, using Solidworks simulate the assembly between components to determine the feasibility of interference and system. The optical components have tolerances of 2 mm and 1 mm in the longitudinal and transverse directions respectively. And the position of the detector can be adjusted to reach the DoF range.

    致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 序論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 本文架構 3 第二章 原理探討及文獻研究 4 2.1 幾何光學 4 2.2 繞射 (Diffraction) 4 2.3 艾瑞盤 (Airy Disk) 5 2.4 繞射極限 (Diffraction limit) 7 2.5 數值孔徑 (Numerical Aperture) 7 2.6 光柵 (Grating) 8 2.6.1 光柵方程式 8 2.6.2 光柵色散 9 2.6.3 光柵分辨率 10 2.6.4 光柵應用相關理論 10 2.7 聚焦縱深 (Depth of Focus, DoF) 13 2.8 半高全寬解析度 (FWHM Resolution) 13 2.9 調制轉移函數 (Modulation Transfer Function) 15 第三章 Offner光譜儀參數設計及建模 18 3.1 Offner系統與光學組件選擇 18 3.2 系統參數設計 19 3.3 系統模型建立 23 第四章 光線追跡模擬分析 25 4.1 序列式光線追蹤 25 4.1.1 優化波長選擇 25 4.1.2 市售透鏡規格系統優化 27 4.1.3 光譜總解析度分析 28 4.2 非序列式光線追蹤 36 4.2.1 點光源搭配底片規格 37 4.2.2 狹縫光源搭配偵測器規格 49 第五章 光柵繞射效率分析 61 5.1 閃耀光柵分析 61 5.2 繞射效率模擬 66 第六章 容差分析 69 6.1 機構容差分析 69 6.1.1 偵測器可調變擺放位置之系統容差分析 69 6.1.2 偵測器固定擺放位置之系統容差分析 86 6.2 光柵容差分析 91 6.2.1 加工誤差繞射效率模擬 91 6.2.2 加工誤差斑點分析 100 第七章 結論 104 參考文獻 106 附錄 108 附錄 A 光學機構 108 附錄 B 光學元件 115

    [1]徐百輝,「大地的辨識密碼-高光譜影像」,科學發展,第四百一十六期,第13-19頁 (2007)。
    [2]李龍正,「高光譜影像儀發展及影像市場前景」,科儀新知,第二十六卷,第二期,第50-57頁 (2004)。
    [3]Bekefi, George; Barrett, Alan. Electromagnetic vibrations, waves, and radiation 2nd, illustrated. MIT Press. 1977.
    [4]Airy, G. B., "On the Diffraction of an Object-glass with Circular Aperture", Transactions of the Cambridge Philosophical Society, Vol. 5, p. 287
    [5]M. Born and E. Wolf, Principles of Optics (Pergamon Press, New York, 1965)
    [6]歐陽洋蔥. (2019). 為什麼說像素越高,拍照就越好. Retrieved from
    [7]曾奕晴 (2019). 孔徑 | 科學Online. Retrieved from
    [8]徐郁茹,「可見光至近紅外波段微型高光譜影像儀之設計與成像分析」,碩士論文,國立台灣科技大學,台北(2018)。
    [9]Xesús Prieto-Blanco, Carlos Montero-Orille, Héctor González-Núñez, et al., “Imaging with classical spherical diffraction grating: the quadrature configuration,” Journal of the Optical Society of America, Vol. 26, pp. 2400-2409 (2009).
    [10]H. Yinlei, Y. Jianyi, J. Xiaoqing, Z. Wei, Z. Jianying, Z. Haifeng, et al., “Analysis on Curved Waveguide Grating (CWG) with Rowland circle construction,” Optical Fiber Communication and Optoelectronics Conference, Asia, pp. 339-341 (2007).
    [11]LIU Wei. Design and analysis of structure of compact Offner spectral imaging system[J]. Chinese Journal of Optics, 2010, 3(2): 157-163.
    [12]Mertz L, “Concentric spectrographs,” Applied Optics, Vol. 16, pp.3122-3124 (1977).
    [13]Seo Hyun Kim, Hong Jin Kong, Hana Ku; Jun Ho Lee, “Analytical design of a hyper-spectral imaging spectrometer utilizing a convex grating,” SPIE (2012).
    [14]X. Prieto-Blanco, C. Montero-Orille, B. Couce, and R.de la Fuente, “Analytical design of an Offner imaging spectrometer,” Optics Express, Vol. 14, No. 20, pp. 9156-9168 (2006).
    [15]M. Borengasser, W. S. Hungate and R. Watkins, Hyperspectral Remote Sensing: Principles and Applications, CRC Press, Boca Raton, pp. 18-23 (2002).
    [16]P. Getreuer, “A Survey of Gaussian Convolution Algorithms,” Image Processing On Line, Vol. 3, pp. 286-310 (2013)

    無法下載圖示 全文公開日期 2024/08/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE