簡易檢索 / 詳目顯示

研究生: 沈銘祥
Ming-Hsiang Shen
論文名稱: 太陽能節能玻璃應用於實體建築之發電與節能研究
Application of heat-insulation solar glass to enhance power generation and energy saving at architectures
指導教授: 楊錦懷
Chin-Huai Young
口試委員: 黃兆龍
none
簡智賢
none
周宜雄
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 155
中文關鍵詞: 發電隔熱太陽能節能玻璃
外文關鍵詞: power generation, heat-insulation, heat insulati
相關次數: 點閱:198下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來因為科技發展、人口不斷上升、使得必須與自然爭地,而科技所製造出來的汙染也傷害了我們地球,導致氣候變化日趨嚴重,有鑑於此,許多國家開始注重環保、節能、並找出無污染的替代能源取代有限的自然資源,像是以無污染無排碳的太陽能源來取代一般高污染的發電廠,而BIPV(Building integrated photovoltaic)亦是,他將太陽能板與建築物做為一個整合使之結合成一體,不但可以取代建築物的傳統建材,減少耗能,並可以減少土地開發與自然爭地的破壞,在台灣地狹人稠的土地上,是有很大的發展空間且極有潛力的。
    而本研究針對BIPV進行研究調查,在E2頂樓建構三間小屋並在立面窗戶及採光罩裝設玻璃,其中三間小屋分別為: BIPV節能屋(裝設太陽能節能玻璃)、一般屋(一般玻璃)、單晶屋(單晶矽太陽能玻璃),並針對這三間小屋,同時進行一整年的 溫度紀錄(密閉、通風、強制通風)、空調節能(冷、暖氣)、發電量測(立面、斜面23.5度 薄膜)的比較試驗。
    研究結果發現在溫度紀錄方面:夏季時,節能屋具有隔熱的功能,有效阻絕室外的輻射熱,在密閉試驗中節能屋與一般屋溫度差距到10度的溫差。空調節能方面: 在冬季的暖氣試驗及夏季的冷氣試驗,因為節能屋具有保暖及隔熱的優點,因此相較於一般屋及單晶屋,可以減省不少的能源的消耗。
    發電量測方面: 經過一整年的量測比較發現立面(透光10%)與斜面(透光10%)之間在不同季節的發電量比例關係。


    According to the Bureau of Energy, MOEA (Ministry of Economic Affairs) research data shows that the building energy consumption is about 1 / 3 of the total energy consumption. The higher development of the country has the more proportion of energy consumption, and Taiwan’s is about 30% to 35%. Therefore, each of the countries develops the zero energy building positively, and this construction will become the new trend in the future. Zero energy building uses a large amount of renewable energy, combined with a variety of energy-saving technologies to reduce the requirement of energy outside, and makes the building be self-sufficiency.
    In this study, we do the research about BIPV. We construct three houses on the top floor of E2 building, one is BIPV energy saving house (installation with heat insulation solar glass), another is the general house (installation with normal glass), and the other is single crystal house (installation with single-crystal silicon solar glass). For this three houses, we record the temperature throughout the year in airtight, ventilation, and forced ventilation situations at the same time, and do the comparison test such as air-conditioner saving (both cooling and heating) and power measurement (erect surface and 23.5 degree incline thin film glass).
    The results show that the temperature of the energy-saving house has a heat insulation function can prevent heat from the sunlight. In airtight test, the temperature of the energy saving house is lower than the general house about 10 degrees of temperature. In air-conditioner saving test, because the energy-saving house can maintain the indoor temperature and has the function of insulation, it can save a lot of energy consumption in comparison with the general house.
    According to the power measurement data and the effect of air-conditioner energy-saving, we analyze the results and find that the energy-saving house can reduce 33% of energy compared to the normal house and to single-crystal house can reduce 43% of energy. In heating space test, the energy-saving house can reduce 20% of energy compared to the general house and to single-crystal house can reduce 28% of energy. If we consider both the tests and the solar energy generating during a year, the building will reduce a great deal of the additional energy requirements.
    According to the physical properties of BIPV test, the energy-saving house has good abilities to resist the UV radiation and the heat radiation. It can not only protect people against the damage of UV radiation, but also slow down the heat transfer into the house, and keep a comfortable environment indoor.

    摘要: II 總目錄 III 表目錄 V 圖目錄 VII 第一章緒論 1 1.1研究動機 1 1.2研究目的 3 1.3研究方法 4 1.4研究流程 5 第二章 文獻回顧 6 2.1太陽能電池 6 2.2 太陽能電池種類、發電效率介紹 7 2.2.1晶矽: 7 2.2.2非晶矽(矽薄膜太陽能電池): 12 2.2.3 影響模組發電量的因素 18 2.2 太陽光電與建築結合應用BIPV 22 2.2.1 BIPV建築法規 24 2.2.2 BIPV需考慮之影響因子 25 2.2.3 BIPV之環境影響 28 2.3 太陽能節能玻璃 33 第三章 試驗計劃 40 3.1 試驗流程 40 3.2 試驗參數 44 3.3 試驗設備與儀器 48 3.3.1 實體屋溫度監控 48 3.3.2 節能分析試驗 49 3.3.3太陽能玻璃試驗 54 3.4 實體屋溫度監控-密閉試驗 56 3.5 實體屋溫度監控-自然通風試驗 59 3.6 實體屋溫度監控-強制抽風試驗 60 3.7 節能試驗分析-冷氣試驗 62 3.8 節能試驗分析-暖氣試驗 64 3.9 節能試驗分析-電力監測試驗 66 3.10 太陽能玻璃試驗-自然照明試驗 67 3.11 太陽能玻璃試驗-抗紫外線試驗 69 3.12太陽能玻璃試驗-抗輻射熱試驗 70 3.13太陽能玻璃試驗-隔音試驗 72 第四章 數據分析與討論 74 4.1實體屋溫度監控試驗 74 4.1.1實體屋溫度監控試驗-密閉試驗 74 4.1.2實體屋溫度監控試驗-自然通風試驗 86 4.1.3實體屋溫度監控試驗-強制抽風試驗 92 4.1.4實體屋溫度監控試驗-小結 96 4.2實體屋節能試驗 97 4.2.1 實體屋節能試驗-冷房試驗 97 4.2.2實體屋節能試驗-暖房試驗 106 4.2.3 實體屋節能試驗-電力監測試驗 115 4.2.4 實體屋節能試驗-小結 135 4.3太陽能玻璃試驗 141 4.3.1 自然照明試驗 141 4.3.2 抗紫外線試驗 143 4.3.3 抗輻射熱試驗 146 4.3.4 隔音試驗 150 4.3.5 太陽能玻璃試驗-小節 152 第五章 結論與建議 153 參考文獻 155

    【1】益通光電 http://www.e-tonsolar.com/edu.htm#4
    【2】劉智生、洪儒生 臺灣科技大學化學工程系 太陽能電池的高效率化2009/7/6
    【3】陳子秦工程師 財團法人台灣產業服務基金會 太陽能電池產業製程及污染防治簡介
    【4】 江志宏 KSON 薄膜太陽能電池
    【5】 鄭淑娟 薄膜太陽能電池技術、製程與產品特性分析2009/1/12
    【6】林柏伸 太陽能節能玻璃建築發電與節能效益分析,國立台灣大學營建系碩士論文99
    年7月
    【7】 Messenger, Roger and Jerry Ventre; “Photovoltaic Systems Engineering”;
    CRC Press LLC, Boca Raton, FL; 2000
    【8】楊喜書 玻璃透射率角度關聯性對矽晶光伏電池模組發電量影響之研究
    九十四 年七月
    【9】 紫外線介紹 tp://www.beauty-guide.com.tw/term/04_43.php
    【10】 陳頤承、郭昭顯、陳俊亨 工業材料雜誌258期 /工研院太陽
    光電科技中心
    【11】 桑野 幸德,1995,<外壁一體型太陽電池太陽光發電住宅>
    【12】 葉爵慶,「光電隔熱節能屋監測與分析」,國立台灣大學營建
    系碩士論文(2009)
    【13】劉啟宏 太陽能節能玻璃帷幕技術開發 99年12月
    【14】S.O.Kasap ,Optoelectronics and photonics principles and practice ,
    Pearson Prentice Hall , 2006
    【15】 Akihiko NAKAJIMA, Mitsuru ICHIKAWA, Masataka KONDO, Kenji YAMAMOTO,Hideo
    YAMAGISHI and Yoshihisa TAWADA pectral Effects of a Single-Junction
    Amorphous Silicon Solar Cell on Outdoor Performance
    【16】TAKEO S. SAITOH*,and TETSUJI FUJINO** ADVANCED ENERGY-EFFICIENT HOUSE
    (HARBEMAN HOUSE) WITH SOLAR THERMAL, PHOTOVOLTAIC, AND SKY RADIATION
    ENERGIES

    無法下載圖示 全文公開日期 2016/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE