簡易檢索 / 詳目顯示

研究生: 郭筱薇
Siao-wei Guo
論文名稱: 鋅-錫-鋁-銅基高溫無鉛銲料之研究
Developement of High-temperature Lead-free solders: Zn-Sn-Al-Cu Based Alloy
指導教授: 顏怡文
Yee-wen Yen
口試委員: 吳子嘉
Albert T. Wu
施劭儒
Shao-ju Shih
陳志銘
C. M. Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 86
中文關鍵詞: 鋅-錫-鋁-銅合金液相線溫度硬度拉伸強度界面反應
外文關鍵詞: Zn-Sn-Al-Cu alloy, liquildus temperature, hardness, tensile strength, interfical reaction
相關次數: 點閱:258下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高鉛銲料常使用於電子元件內部連接,近年由於歐盟正式立法,對含鉛的電子產品有所限制,因此電子構裝技術朝無鉛化發展。本研究以開發高溫無鉛銲料為主要目標,以Zn-Sn-Al-Cu合金為主要銲料成分,並添加Ni、Ge等少量元素,用以調整合金物理及化學特性。此外,也以Cu/alloy/Ni/Cu之反應偶結構,在300及350℃分別迴焊1、2以及4小時,觀察接合情形及界面生成相。
    實驗結果顯示,Zn-Sn-Al-Cu基合金的熱分析,液相線溫度在275oC至375oC之間,隨Zn含量的提高液相線溫度隨著提高。而Zn的增加將使得硬度及強度較佳的(Zn)及CuZn5相增加故將促使合金硬度及最大抗拉強度的提升;而Al的添加也將提升其機械強度。Cu/alloy/Ni/Cu反應偶在迴焊後與Cu接合處產生三或四種型態不同的介金屬相(IMC),有CuZn、、CuZn5及Al4Cu3Zn相,相為-Al4Cu9與-Cu5Zn8所形成連續的固溶相,而相的生成與否與合金中Al/Zn的比例有關;於Ni/Cu端的合金內則可觀察到CuZn5、Al4Cu3Zn、(Zn)、(Al)及-Sn相,其中Ni皆不參與界面反應。


    Despite numerous studies on the research and development for high-temperature lead free solders, high-lead solder are still in used because high-temperature lead free solders also has been facing several serious problems during these years. Establishing high-temperature lead-free solder is an urgent priority. This study investigates the development of high-temperature lead-free solders and their properties by improve its wettability and oxidation resitivity after addition of Ni and Ge in Zn-Sn-Al-Cu based alloy. The solders are examined for microstructure, thermal properties, mechanical properties and investigate the interfacial reaction between Zn-Sn-Al-Cu based alloy with Cu and Ni/Cu at 300 and 350oC for 1, 2 and 4 hours.
    The experimental results indicate that the liquilidus temperature of Zn-Sn-Al-Cu based alloys is between 275oC to 375oC with Zn content. As Zn contents increase the (Zn) and CuZn5 increase, therefore resulting in the increase of micro-hardness and ultimate tensile strength and the addition of Al improve mechanical properties. Three or four intermetallic compounds (IMCs) are formed at the interface in the Cu/alloy diffusion couple. The reaction phases are identified as CuZn5, Al4Cu3Zn, phase and CuZn is formed facing to the Cu substrate. The phase is formed or not that is related to Al/Zn ratio. The IMCs are indentified as CuZn5, Al4Cu3Zn, (Zn), (Al) and-Sn phase in the alloys near the Ni/Cu substrate after reflow.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 前言 1 第二章 理論基礎與文獻回顧 3 2.1 電子構裝技術簡介 3 2.1.1 覆晶接合技術 4 2.2 高溫銲料 5 2.2.1 Zn-Sn系合金 8 2.2.2 Zn-Al系合金 11 2.2.3 Au-Sn系合金 13 2.2.4 Bi-Ag系合金 13 2.2.5 Sn-Sb系合金 13 2.2.6 其他 14 2.3 熱性質分析 15 2.3.1 示差熱分析法 15 2.3.2 示差掃瞄卡計 18 2.4 擴散理論 21 2.5 凝固理論 22 2.5.1 成核 22 2.5.2 成長 23 2.6 界面反應相關文獻 24 2.6.1 Zn-Sn系統無鉛銲料之界面反應 24 2.6.2 Zn-Al系統無鉛銲料之界面反應 27 2.6.3 Sn-Zn-Al系統無鉛銲料之界面反應 28 第三章 實驗方法及步驟 30 3.1 銲料製備 30 3.2 金相與顯微觀察 32 3.3 機械性質分析 32 3.3.1 硬度分析 32 3.3.2 拉伸試驗 33 3.4 熱性質量測 34 3.5 界面反應 35 第四章 結果與討論 37 4.1 合金固化析出相之分析 37 4.2 合金之熱分析結果 52 4.3 機械性質 58 4.3.1微氏硬度值 58 4.3.2拉伸強度 60 4.4界面反應 63 第五章 結論 80 第六章 參考文獻 82

    1.WEEE Regulations, EU-Directive 96/EC (2002).
    2.RoHS Regulations, EU-Directive 95/EC (2002).
    3.田民波/著、顏怡文/教訂,「半導體電子元件構裝技術」,五南圖書出版社(2005)
    4.陳信文、陳立軒、林永森、陳志銘,「電子構裝技術與材料」,高立圖書有限公司(1995)
    5.S. K. Kang, P. Gruber, and D. Y. Shih, JOM 60 (2008) 66-67.
    6.S. J. Wang and C. Y. Liu, J. Electron. Material. , 35 (2006) 1955-1960.
    7.J. Zhao, Y. Mutoh, Y. Miyashita, T. Ogawa, and A. J. Mcevily, J. Electron. Material. 30, 4 (2001) 415-421.
    8.M. Abtew, G. Selvadurary, Mater. Sci. Eng. B, 27 (2002) 95.
    9.I. E. Anderson, J. C. Foley, B. A. Cook, and J. Harringa, J. Electron. Material., 30 (2001) 26-29.
    10.Y. Kariya, and M. Otsuka, J. Electron. Material., 27 (1998) 1229.
    11.P. G. Neudeck, R. S. Okojie, and L. Y. Chen, Proc. IEEE, 90 (2002) 1065-1076.
    12.日本日經出版社/著,石岱勳/譯,劉羽雯/主編,,「RoHS綠色指令:全球環境規範&無鉛焊接技術」,龍璟文化事業股份有限公司 (2005)
    13.K. Suganuma, S. Kim, K. S. Kim, JOM, 61 (2009)64-71.
    14.P. T. Vianco, Welding Journal 81 (2002) 51-4
    15.L. S. Kim, C. H. Yu, N. H. Kim, N. K. Kim, H. J. Chang, and E. G. Chang, Microelectron. Reliab. 43 (2003) 757-763.
    16.W. D. Zhuang, P. C. Chang, F. Y. Chou, and R. K. Shiue, Microelectron. Reliab., 41 (2001) 2011-2021.
    17.Y. Nagatomo, T. Nagase, and S. Shimamura, J. Jpn. Inst. Electron. Packag. 3 (2000) 330-334.
    18.M. McMCormack, S. Jin,G. W. Kammlott and H. S. Chen, Appl. Phys. Lett., 63 (1993) 15-17.
    19.C. M. Miller, I. E. Anderson, J. F. Smith, J. Electron. Mater. 23 (1994) 595-601..
    20.W. J. Tomlinson, I. Collier, J. Mater. Sci. 22 (1987) 1835-1839.
    21.Z. Mei, J. W. Morris Jr., J. Electron. Mater. 21 (1992) 599-607.
    22.M. Abtew, G. Selvadurary, Mater. Sci. Eng. B ,27 (2002) 95
    23.J. M. Song, P. C. Liu, C. L. Shih, K. L. Lin, J. Electron. Mater., 34 (2005) 1249-1254.
    24.C. W. Huang, K. L. Lin, J. Mater Res., 19 (2004) 3560-3568.
    25.M. McCormack and S. Jin, JOM, 45 (1993)36-40.
    26.Z. Moser, J. Dutkiewicz, W. Gasior, J. Salawa, ASM Handbook- Alloy Phase Diagrams Vol.3, edited by H. Baker, ASM International (1990)2.372.
    27.W. K. Liou, Y. W. Yen, C.C. Jao, J. Electron. Mater., 38 (2009) 2222-2227
    28.D. Q. Yu, H. P. Xie, L. J. Wang, J. Alloy. Compd., 385 (2004) 119-125.
    29.Y. C. Huang, S. W. Chen, C. Y. Chou, and W. Gierlotaka, J. Alloy. Compd., 477 (2009) 283-290.
    30.S. K. Das, A. Sharif , Y.C. Chan, N. B. Wong, W. K. C. Yung, J. Alloys and Compd., 481 (2009) 167-172.
    31.T. Takahashi, S. Komatus, H. Nishikawa, and T. Takemoto, J. Electron. Material. 39 (2010)1241-1247
    32.K. L. Lin, and T. P. Liu, Mater. Chem. Phys., 56 (1998) 171-176.
    33.M. Kitajima, T. Shono, Fujitsu Sci. Tech. J., 41 (2005) 225-235.
    34.K. L. Lin, L. H. Wen, and T. P. Liu, J. Electron. Material. 27 (1998) 97-105.
    35.N. Kang, H. S. Na, S. J. Kim, C. Y. Kang, J. Alloy. Compd. 467 (2009) 246–250.
    36.A. Sebaoun, D. Vincent and D. Treheux, ASM Handbook of Ternary Alloy Phase Diagrams Vol.3, edited by H. Baker, ASM International (1990) 4353.
    37.S. J. Kim, K. S. Kim, S .S. Kim, C. Y. Kang, Mater. Trans. 49 (2008)1531-1536
    38.J. L. Murrary, ASM Handbook- Alloy Phase Diagrams Vol.3, edited by H. Baker, ASM International, Material Park, Ohio (1990) 2.56.
    39.Y. Takaku, L. Felicia, I. Ohnuma, R Kainuma, and K. Ishida, J. Electron. Mater., 37 (2008)314-323.
    40.林奕安,「鋅基高溫無鉛銲錫合金開發與其性質之研究」,碩士論文,國立成功大學(2009).
    41.ASM Handbook- Ternary Alloy Phase Diagrams Vol.3, edited by H. Baker, ASM International, Material Park, Ohio (1990) 3409.
    42.Materials Science International Team MSITR, and Nataliya Bochvar, Volodymyr Ivanchenko, Evgeniya Lysova, Lazar Rokhlin, Non-Ferrous Metal Ternary Systems. Selected Soldering and Brazing Systems: Phase Diagrams, Crystallographic and Thermodynamic Data, edited by G. Effenberg, S. Ilyenko (2005).
    43.Y. Shi, W. Fang, Z. Xia, Y Lei, F. Guo, and X. Li, J. Mater. Sci.: Mater. Electron 21 (2010) 875-881.
    44.S. F. Carbin, J. Electron. Material. 34 (2005) 1016-1025.
    45.N. Megumi, H. Noboro, S. Masayoshi and O. Masahiro, J. Japan Institute Electronics Packaging, 48 (2005) 495-501.
    46.I. Shohji, S. Tsunoda, H. Watanabe, T. Asai and M. Nagano, Materials Transactions, 46 (2005) 2737-2744.
    47.江昱成,「BGA構裝中SAC與SACNG無鉛銲料與Au/Ni/Cu多層結構之界面反應與銲點破壞性質」,碩士論文,台灣科技大學(2008)
    48.N. Hidaka, H. Watanabe, and M. Yoshiba, J. Electron. Material. , 38 (2009)670-677.
    49.S. W. Cho, K. Han, Y. Yi, S. J. Kang, K. H. Yoo, K. Jeong and C.N. Whang, Adv. Eng. Mater. , 8 (2006) 111-114.
    50.W. W. Wendlandt/原著,陳道達/譯,「熱分析」,渤海文化公司(1991)
    51.S. W. Chen, C. C. Huang, Chem. Eng. Sci. , 50 (1995) 417-431
    52.S. W. Chen, C. C. Lin, C. M. Chen, Metallurgical and Materials Transactions A, Volume 29A (1998)1965-1972.
    53.B. Cantor, J. Thermal Analysis 42 (1994) 647-665.
    54.M. C. Flemings, Metall. Mater. Trans. B, 5 (1974) 2121-134.
    55.P. Nash, and Y. Y. Pan, ASM Handbook- Alloy Phase Diagrams Vol.3, edited by H. Baker, ASM International, Material Park, Ohio (1990) 2.321.
    56.P. Nash, and A. Nash, ASM Handbook- Alloy Phase Diagrams Vol.3, edited by H. Baker, ASM International, Material Park, Ohio (1990)2.318.
    57.Y. C. Chan, M. Y. Chiu, and T. H. Chuang, Z. Metallkd., 93 (2002) 95-98.
    58.C. Y. Chou, S. W. Chen, and Y. S. Chang, J. Mater. Res., 21 (2006) 1849-1856.
    59.W. Zhu, H. Liu, J. Wang, G. Ma, and Z. Jin, J. Electron. Mater., 39 (2009) 209-214.
    60.C. M. Chen, and C. H. Chen, J. Electron. Material. 36 (2007) 1363-1371.
    61.J. E. Lee, K. S. Kim, K. Suganuma, J. Takenaka, and K. Hagio, Mater. Trans., JIM, 46 (2005) 2413-2418.
    62.Y. Takaku, K. Makino, K. Watanabe, I. Ohnuma, R. Kainuma, Y. Yamada, Y. Yagi, I. Nakagawa, T. Atsumi, and K. Ishida, J. Electron. Material., 38 (2009) 54-60.
    63.K. L. Lin, and H. M. Hsu, J. Electron. Material. 30 (2001) 1068-1071
    64.A. P. Miodowink, Binary Alloy Phase Diagrams (1990) 1508.
    65.R. W. Olesinski and G. J. Abashian, ASM Handbook- Alloy Phase Diagrams Vol.3, edited by H. Baker, ASM International, Material Park, Ohio (1990)
    66.R. W. Olesinski and G. J. Abashian, ASM Handbook- Alloy Phase Diagrams Vol.3, edited by H. Baker, ASM International, Material Park, Ohio (1990)
    67.陳秉輝,「Ga和Ge的添加對Sn-9Zn無鉛銲錫合金抗氧化和拉伸性質之影響」,國立成功大學(2007)
    68.B. F. Dyson, T. R. Anthony and D. Turnbull, J. Appl. Phy., 38 (1967) 3408.

    無法下載圖示 全文公開日期 2013/07/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE