簡易檢索 / 詳目顯示

研究生: KEFYALEW DAGNEW ADDISU
KEFYALEW DAGNEW ADDISU
論文名稱: Alginate Based Nanocomposites for In-Vivo Cancer Diagnosis and Therapy
Alginate Based Nanocomposites for In-Vivo Cancer Diagnosis and Therapy
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 蔡協致
Hsieh-Chih Tsai
鄭智嘉
Chih-Chia Cheng
何 明樺
Ming-Hua Ho
廖愛禾
Liao, Ai-Ho
鄭如忠
Ru-Jong Jeng
鍾次文 教授
Tze-Wen Chung
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 185
中文關鍵詞: 海藻酸鈉T1-磁共振成像(MRI)腫瘤診斷鑭系元素聚多巴胺類球面斑馬魚治療診斷學
外文關鍵詞: Alginate, T1-Magnetic Resonance Imaging (MRI), Tumor diagnosis, Lanthanides, Polydopamine, Spheroids, Zebrafish, Theranostics
相關次數: 點閱:269下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

癌症是目前世界上最致命的疾病,預計在2030年會造成超過1150萬人死亡。常見的幾種癌症包括有:大腸癌、口腔癌、子宮頸癌、乳癌等,及早的發現並治療可以提高治癒率。目前有廣大的研究將奈米載體用於癌症的診斷與治療,海藻酸是天然存在的無支鏈、生物相容、無毒、非免疫原性和可生物降解的多醣之一,可用作奈米醫學的傳輸工具,海藻酸還具有許多游離的羥基和羧基,透過修飾這些官能基形成海藻酸衍生物,可以改變如溶解度、親疏水性、物理化學和生物學的特性,使其成為功能性化學材料的理想選擇。
本論文具有兩個獨立的研究系統:第一部分研究了兩種由鈣/錳離子複合海藻酸 - 聚多巴胺奈米凝膠或海藻酸 - 多巴胺奈米凝膠(AlgPDA(Ca/Mn)或AlgDA(Ca/Mn))的混合物。在這樣的系統中,Ca2+陽離子與Alg的羧酸進行離子相互作用,以增強奈米凝膠的穩定性,同時Mn陽離子的複雜性也增加了合成奈米凝膠的膠體穩定性。利用超導量子干涉儀裝置(SQUID)測量證實了製備CA的磁性,證明了潛在的順磁性。因此,T1弛豫率測量顯示,PDA複合合成奈米凝膠在7.0 T MRI圖像中顯示出強烈的正對比度增強,r1 = 12.54 mM-1∙s-1,而DA複合合成奈米凝膠顯示相對較低的T1弛豫效應,r1 = 10.13 mM-1∙s-1。此外,當與小鼠巨噬細胞(RAW 264.7)和HeLa細胞一起培養時,兩種合成的奈米凝膠在濃度高達0.25mM濃度時具有> 92%的細胞存活率,在體內分析中具有高的生物相容性。體內MRI測試顯示了合成的奈米凝膠在長時間內表現出了高的信噪比,這為腫瘤和解剖學成像提供了更長的圖像採集時間。此外,T1加權MRI結果顯示聚乙二醇化的AlgPDA(Ca/Mn)奈米凝膠顯著的增強肝臟和腫瘤組織的信號。本研究中使用低成本的一鍋合成法,利用高滲透長滯留效應(EPR),提供了一種有前途和競爭的方法用於非侵入性腫瘤檢測和全面的解剖學診斷,顯著增強了體外和體內成像。
第二部分的研究,通過簡單的金屬 - 配體相互作用製備具pH敏感性鑭系元素多功能奈米粒子,用於進行癌細胞成像和藥物傳遞。首先,研究了兩種分別為铽/銪或鏑/氧化鉺奈米粒子(Tb/Eu @ AlgPDA和Dy/Er @AlgPDA NPs)複合的海藻酸 - 聚多巴胺的系統,然後用腫瘤靶向葉酸(FA)負載抗癌藥物阿黴素(DOX)修飾Tb/Eu @ AlgPDA,以形成FA-Tb / Eu @ AlgPDA-DOX奈米粒子。在這樣的系統中,除了主動靶向葉酸和葉酸受體之間的相互作用之外,還引入了PDA的貽貝特性以加強腫瘤靶向性和滲透性。Tb/Eu @ AlgPDA系統在光致發光效率優於Dy/Er @ AlgPDA,發出強烈和尖銳的螢光光譜。此外,通過MTT試驗與HeLa細胞孵育時,Tb / Eu @ AlgPDA奈米粒子細胞活力> 93.3%,達到0.50 mg / mL 優於Dy /Er @ AlgPDA 奈米粒子細胞活力(82.4%);與斑馬魚的胚胎和成魚 (Danio rerio)動物實驗測試上則顯示其具有高生物相容性。在FA-Tb/Eu @ AlgPDA-DOX系統表現中表現出pH敏感和持續的藥物釋放;在HeLa細胞的球狀模型中,與游離的阿黴素相比,FA-Tb / Eu @ AlgPDA-DOX系統顯示出更好的穿透效率和抑制類球面生長。與斑馬魚胚胎一起孵育後,FA-Tb / Eu @ AlgPDA-DOX系統也展現出較好的抗腫瘤能力。所有這些結果表明FA-Tb / Eu @ AlgPDA-DOX 奈米粒子是一種具有腫瘤靶向和癌症治療的穿透能力的多功能奈米載體。


Despite improvements in diagnosis and therapy, cancer remains the world’s deadliest disease, with 11.5 million deaths forecast in 2030. Some of the most common types of cancer, including cervical, breast, oral and colorectal cancers, are more likely to cure if they are detected and treated early. A wide range of platforms are currently being investigated as nanocarriers for the diagnosis and treatment of cancer. Alginate is one of the naturally occurring unbranched, biocompatible, non - toxic, non-immunogenic and biodegradable polysaccharides which can be used as delivery vehicles for nanomedicine. Alginate also has a number of free groups of hydroxyl and carboxyl distributed along the backbone, making it ideal for chemical functionality. By forming alginate derivatives by functionalizing the hydroxyl and carboxyl groups available, properties such as solubility, hydrophobicity and physicochemical and biological characteristics can be altered. This dissertation is organized on the basis of two separate sections: the first section examined two systems of calcium/manganese cations complexed with either alginate-polydopamine or alginate-dopamine nanogels ((AlgPDA(Ca/Mn or AlgDA (Ca/Mn)) nanogels (NG). In such systems, Ca2+ cations form ionic interaction via carboxylic acids of the Alg backbone to enhance the stability of the synthetic NG. Likewise, the complexity of Mn cations also increased the synthetic nanogel 's colloidal stability. Magnetic property of prepared CAs was confirmed with superconducting quantum interference device (SQUID) measurements, proving the potential paramagnetic property. Hence, T1 relaxivity measurement showed that PDA-complexed synthetic NG reveals a strong positive contrast enhancement with r1=12.54 mM-1∙s-1 in 7.0 T MRI images while DA-complexed synthetic NG showed relatively lower T1 relaxivity effect with r1 =10.13 mM-1∙s-1 value. Furthermore, both synthetic NGs reveals negligible cytotoxicity with > 92% cell viability up to 0.25 mM concentration when incubated with mouse macrophage (RAW 264.7) and HeLa cells, and high biocompatibility under in vivo analysis. An in vivo MRI test indicate that the synthetic NG exhibits a high signal to noise ratio for longer hours, which provides a longer image acquisition time for tumor and anatomical imaging. Additionally, T1-weighted MRI results revealed that PEGylated AlgPDA(Ca/Mn) NGs significantly enhanced the signals from liver and tumor tissues. Therefore, owing to enhanced permeability and retention (EPR) effect, significantly enhanced both in-vitro and in-vivo imaging, low cost and one-pot synthesis method, the Mn-based biomimetic approach used in the study provides a promising and competitive alternative for non-invasive tumor detection and comprehensive anatomical diagnosis. In section two, a pH-responsive mixed lanthanide-based multifunctional nanoparticles (NPs) were fabricated by simple metal-ligand interactions for simultaneous cancer cell imaging and drug delivery. First, two new systems of alginate-polydopamine complexed with either terbium/europium or dysprosium/erbium oxides NPs (Tb/Eu@AlgPDA and Dy/Er@AlgPDA NPs) were investigated. Tb/Eu@AlgPDA NPs were then functionalized with a tumor-targeting ligand folic acid (FA) and loaded anti-cancer drug, doxorubicin (DOX), to form FA-Tb/Eu@AlgPDA-DOX NPs. Under such systems, the mussel-inspired property of PDA was introduced to improve tumor targetability and penetration in addition to active targeting (interaction between FA and folate receptor). Photo-luminescent efficiency showed that the Tb/Eu@AlgPDA system is superior to Dy/Er@AlgPDA, presenting intense and sharp emission on fluorescence spectra. In addition, compared to Dy/Er@AlgPDA NPs (82.4%), Tb/Eu@AlgPDA NPs exhibits negligible cytotoxicity with > 93.3% cell viability up to 0.50 mg/mL when incubated with HeLa cells via MTT assay, and high biocompatibility when incubated with the embryo and larvae of zebrafish (Danio rerio). FA-Tb/Eu@AlgPDA-DOX system exhibit a pH-responsive and sustained drug release pattern. In a spheroid model of HeLa cells, FA-Tb/Eu@AlgPDA-DOX system showed better penetration efficiency and spheroid growth inhibitory effect as compared with free DOX. After incubated with zebrafish embryo, FA-Tb/Eu@AlgPDA-DOX system also exhibited improved antitumor efficacies rather than the other experimental groups in HeLa tumor-xenografted zebrafish. Therefore, all these results suggested that FA-Tb/Eu@AlgPDA-DOX NPs is a promising multifunctional nanocarrier with tumor targeting and penetration capacity for cancer therapy.

摘要i ABSTRACT iii ACKNOWLEDGMENT v CONTENTS vii LIST OF TABLES xii LIST OF FIGURES xiii LIST OF SCHEMES xviii LIST OF ABBREVIATION xix CHAPTER 1 1 1.1 Introduction 1 1.2 Objectives of the study 6 CHAPTER 2 7 Literature Review 7 2.1 Cancer 7 2.1.1. Cancer treatment methods 7 2.2 Major nano-medicines types in the clinic 11 2.2.1 Polymeric based nanoparticles 13 2.3 The main mechanisms of nanoparticle preparation using polysaccharides 15 2.3.1 Polyelectrolyte complexation (PEC) 15 2.3.2 Self-assembly 16 2.3.3 Polysaccharide Nanoparticles by Crosslinking 16 2.3.4 Alginate 19 2.4 Types of biomedical imaging modalities 24 2.4.1 Magnetic resonance imaging (MRI) 25 2.4.2 Optical imaging (fluorescent imaging) 28 2.5 Influence of nano-based technology properties in cellular uptake 30 2.5.1 Size 30 2.5.2 Shape 31 2.5.3 Surface charge 31 2.6 Drug delivery modes for cancer treatment 32 2.6.1 Passive targeting 32 2.6.2 Active targeting 33 2.6.3 Triggered release 34 CHAPTER 3 35 Bioinspired, Manganese Chelated Alginate-Poly (Dopamine) Nanomaterials for Efficient In-Vivo T1_Weighted Magnetic Resonance Imaging (MRI) 35 3.1 Introduction 35 3.2 Experimental Section 39 3.2.1 Materials 39 3.2.2 Synthesis of Alginate-Dopamine (AlgDA) conjugates 39 3.2.3 Preparation of AlgDA(Ca/Mn) and AlgPDA(Ca/Mn) NGs 40 3.2.4 Characterization 41 3.2.5 T1 and T2 Relaxivity MRI studies 42 3.2.6 Cytotoxicity test (MTT assay) 42 3.2.7. Xylenol orange disodium salt for spectrophotometric determination of free manganese ions. 43 3.2.8. PEG surface coating to form AlgPDA(Ca/Mn)-PEG preparation 43 3.2.7 In-vivo MR imaging 44 3.2.8 Histological and bio-distribution study 45 3.3 Results and Discussion 47 3.3.1 Synthesis and characterization of Alginate-polydopamine (AlgPDA) and Alginate dopamine (AlgDA) conjugates 47 3.3.2 Magnetic properties 60 3.3.3 T1 and T2 relaxation measurements 61 3.3.4 In vivo mice T1- MR Images 69 3.4 Conclusions 79 CHAPTER 4 80 Mixed Lanthanide Oxide Nanoparticles Coated with Alginate-Polydopamine as Multifunctional Nano-Vehicles for Dual-Modality: Targeted Imaging and Chemotherapy 80 4.1 Introduction 80 4.2 Experimental Section 85 4.2.1 Materials and Chemicals 85 4.2.2 Synthesis of AlgDA conjugates 85 4.2.3 Synthesis of Tb/Eu and Dy/Er oxide NPs 86 4.2.4 Preparation of AlgPDA coated Tb/Eu and Dy/Er oxide NPs. 87 4.2.5 Characterization 87 4.2.6 Cell Viability Assay of Tb/Eu@AlgPDA and Dy/Er@AlgPDA NPs 88 4.2.7 Cellular uptake and in-vitro Cytotoxicity of FA-Tb/Eu@AlgPDA-DOX NPs. 88 4.2.8 Loading of DOX onto FA- Tb/Eu@AlgPDA NPs 89 4.2.9 In-vitro drug release study 90 4.2.10 Bio-toxicity evaluation and fluorescence imaging in Zebrafish 90 4.2.11 Zebrafish tumor-xenografts and compound treatment. 91 4.2.12 Cell culture and Tumor spheroid model formation 92 4.2.13 Spheroid growth inhibition study 92 4.2.14 NPs penetration and distribution study 93 4.3 Results and Discussion 94 4.3.1 Preparation of AlgPDA-coated mixed lanthanide oxide NPs 94 4.3.2 Optical properties 102 4.3.3 Biocompatibility and Targeted cancer cell imaging nanocomposite carriers 106 4.3.4 Drug loading and in-vitro release 109 4.3.5 Cellular uptake and in-vitro Cytotoxicity of FA-Tb/Eu@AlgPDA-DOX NPs. 111 4.3.6 Zebrafish in-vivo biocompatibility and imaging 116 4.3.7 Anti-tumor effects study in tumor-xenograft zebrafish models 120 4.3.8 Spheroid growth characterization and growth inhibition study 122 4.3.9 Distribution of DOX in 3D spheroids 126 4.4 Conclusions 131 CHAPTER 5 132 5.1 General Summary 132 5.2 Recommendations 134 REFERENCES 136 APPENDIX -A: List of Publications 163 APPENDIX -B: Conferences and Awards 164

1. Bertram, J. S., The molecular biology of cancer. Mol Aspects Med 2000, 21 (6), 167-223.
2. Conniot, J.; Silva, J. M.; Fernandes, J. G.; Silva, L. C.; Gaspar, R.; Brocchini, S.; Florindo, H. F.; Barata, T. S., Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 2014, 2 (105), 1-27.
3. Baskar, R.; Lee, K. A.; Yeo, R.; Yeoh, K.-W., Cancer and radiation therapy: current advances and future directions. International journal of medical sciences 2012, 9 (3), 193-199.
4. Ferlay, J.; Shin, H.-R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D. M., GLOBOCAN 2008, Cancer incidence and mortality worldwide: IARC Cancer Base No. 10 [Internet. Lyon, France: International Agency for Research on Cancer 2010, 1-28
5. Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D., Global cancer statistics. CA Cancer J Clin 2011, 61 (2), 69-90.
6. Wu, D.; Gao, Y.; Qi, Y.; Chen, L.; Ma, Y.; Li, Y., Peptide-based cancer therapy: opportunity and challenge. Cancer Lett 2014, 351 (1), 13-22.
7. Kang, T. H.; Mao, C. P.; He, L.; Tsai, Y. C.; Liu, K.; La, V.; Wu, T. C.; Hung, C. F., Tumor-targeted delivery of IL-2 by NKG2D leads to accumulation of antigen-specific CD8+ T cells in the tumor loci and enhanced anti-tumor effects. PLoS One 2012, 7 (4), e35141.
8. Werner, E. J.; Datta, A.; Jocher, C. J.; Raymond, K. N., High-relaxivity MRI contrast agents: where coordination chemistry meets medical imaging. Angew Chem Int Ed Engl 2008, 47 (45), 68-80.
9. Bony, B. A.; Baeck, J. S.; Chang, Y.; Bae, J. E.; Chae, K. S.; Lee, G. H., Water-soluble D-glucuronic acid coated ultrasmall mixed Ln/Mn (Ln= Gd and Dy) oxide nanoparticles and their application to magnetic resonance imaging. Biomaterials Science 2014, 2 (9), 1287-1295.
10. Xiao, J.; Tian, X.; Yang, C.; Liu, P.; Luo, N.; Liang, Y.; Li, H.; Chen, D.; Wang, C.; Li, L., Ultrahigh relaxivity and safe probes of manganese oxide nanoparticles for in vivo imaging. Scientific reports 2013, 1-7.
11. Ju, K.-Y.; Lee, J. W.; Im, G. H.; Lee, S.; Pyo, J.; Park, S. B.; Lee, J. H.; Lee, J.-K., Bio-inspired, melanin-like nanoparticles as a highly efficient contrast agent for T 1-weighted magnetic resonance imaging. Biomacromolecules 2013, 14 (10), 3491-3497.
12. Chen, Y.; Chen, H.; Zhang, S.; Chen, F.; Sun, S.; He, Q.; Ma, M.; Wang, X.; Wu, H.; Zhang, L., Structure-property relationships in manganese oxide-mesoporous silica nanoparticles used for T 1-weighted MRI and simultaneous anti-cancer drug delivery. Biomaterials 2012, 33 (7), 2388-2398.
13. Terreno, E.; Castelli, D. D.; Viale, A.; Aime, S., Challenges for molecular magnetic resonance imaging. Chem Rev 2010, 110 (5), 19-42.
14. Islam, M. K.; Kim, S.; Kim, H.-K.; Park, S.; Lee, G.-H.; Kang, H. J.; Jung, J.-C.; Park, J.-S.; Kim, T.-J.; Chang, Y., Manganese Complex of Ethylenediaminetetraacetic Acid (EDTA)–Benzothiazole Aniline (BTA) Conjugate as a Potential Liver-Targeting MRI Contrast Agent. Journal of Medicinal Chemistry 2017, 60 (7), 2993-3001.
15. Gale, E. M.; Atanasova, I. P.; Blasi, F.; Ay, I.; Caravan, P., A Manganese Alternative to Gadolinium for MRI Contrast. Journal of the American Chemical Society 2015, 137 (49), 15548-15557.
16. Drahos, B.; Lukes, I.; Toth, E., Manganese(II) Complexes as Potential Contrast Agents for MRI. European Journal of Inorganic Chemistry 2012, 2012 (12), 1975-1986.
17. Cheng, Y.; Zhang, S.; Kang, N.; Huang, J.; Lv, X.; Wen, K.; Ye, S.; Chen, Z.; Zhou, X.; Ren, L., Polydopamine-Coated Manganese Carbonate Nanoparticles for Amplified Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS Appl. Mater. Interfaces 2017, 9, 19296−19306.
18. Shin, J.; Anisur, R. M.; Ko, M. K.; Im, G. H.; Lee, J. H.; Lee, I. S., Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angewandte Chemie International Edition 2009, 48 (2), 321-324.
19. Park, M.; Lee, N.; Choi, S. H.; An, K.; Yu, S.-H.; Kim, J. H.; Kwon, S.-H.; Kim, D.; Kim, H.; Baek, S.-I., Large-scale synthesis of ultrathin manganese oxide nanoplates and their applications to T1 MRI contrast agents. Chemistry of Materials 2011, 23 (14), 3318-3324.
20. Taylor, K. M.; Kim, J. S.; Rieter, W. J.; An, H.; Lin, W.; Lin, W., Mesoporous silica nanospheres as highly efficient MRI contrast agents. J Am Chem Soc 2008, 130 (7), 2154-5.
21. Miao, Z. H.; Wang, H.; Yang, H.; Li, Z. L.; Zhen, L.; Xu, C. Y., Intrinsically Mn2+-Chelated Polydopamine Nanoparticles for Simultaneous Magnetic Resonance Imaging and Photothermal Ablation of Cancer Cells. ACS Appl Mater Interfaces 2015, 7 (31), 16946-52.
22. Meredith, P.; Powell, B. J.; Riesz, J.; Nighswander-Rempel, S. P.; Pederson, M. R.; Moore, E. G., Towards structure–property–function relationships for eumelanin. Soft Matter 2006, 2 (1), 37-44.
23. Zhu, B. C.; Edmondson, S., Polydopamine-melanin initiators for Surface-initiated ATRP. Polymer 2011, 52 (10), 2141-2149.
24. Tang, J. T.; Shi, Z. Q.; Berry, R. M.; Tam, K. C., Mussel-Inspired Green Metallization of Silver Nanoparticles on Cellulose Nanocrystals and Their Enhanced Catalytic Reduction of 4-Nitrophenol in the Presence of beta-Cyclodextrin. Ind Eng Chem Res 2015, 54 (13), 3299-3308.
25. Cheng, Y.; Zhang, S.; Kang, N.; Huang, J.; Lv, X.; Wen, K.; Ye, S.; Chen, Z.; Zhou, X.; Ren, L., Polydopamine-Coated Manganese Carbonate Nanoparticles for Amplified Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS Appl Mater Interfaces 2017, 9 (22), 19296-19306.
26. Liu, Y.; Ai, K.; Lu, L., Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 2014, 114 (9), 5057-115.
27. Kim, T. H.; Lee, S.; Chen, X., Nanotheranostics for personalized medicine. Expert Rev Mol Diagn 2013, 13 (3), 57-69.
28. Swierczewska, M.; Han, H. S.; Kim, K.; Park, J. H.; Lee, S., Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv Drug Deliv Rev 2016, 99 (Pt A), 70-84.
29. Chen, Z.; Zheng, W.; Huang, P.; Tu, D.; Zhou, S.; Huang, M.; Chen, X., Lanthanide-doped luminescent nano-bioprobes for the detection of tumor markers. Nanoscale 2015, 7 (10), 74-90.
30. Xu, G.; Lin, G.; Lin, S.; Wu, N.; Deng, Y.; Feng, G.; Chen, Q.; Qu, J.; Chen, D.; Chen, S.; Niu, H.; Mei, S.; Yong, K. T.; Wang, X., The Reproductive Toxicity of CdSe/ZnS Quantum Dots on the in vivo Ovarian Function and in vitro Fertilization. Sci Rep-Uk 2016, 6, 37677.
31. Hill, T. K.; Abdulahad, A.; Kelkar, S. S.; Marini, F. C.; Long, T. E.; Provenzale, J. M.; Mohs, A. M., Indocyanine green-loaded nanoparticles for image-guided tumor surgery. Bioconjug Chem 2015, 26 (2), 294-303.
32. Ehlerding, E. B.; Grodzinski, P.; Cai, W.; Liu, C. H., Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS Nano 2018, 12 (3), 2106-2121.
33. Xu, W. L.; Bony, B. A.; Kim, C. R.; Baeck, J. S.; Chang, Y. M.; Bae, J. E.; Chae, K. S.; Kim, T. J.; Lee, G. H., Mixed lanthanide oxide nanoparticles as dual imaging agent in biomedicine. Scientific Reports 2013, 3, 1-10.
34. Cui, Y.; Yue, Y.; Qian, G.; Chen, B., Luminescent Functional Metal–Organic Frameworks. Chemical Reviews 2011, 112 (2), 1126-1162.
35. Xu, W. J.; Qian, J. M.; Hou, G. H.; Suo, A. L.; Wang, Y. P.; Wang, J. L.; Sun, T. T.; Yang, M.; Wan, X. L.; Yao, Y., Hyaluronic Acid-Functionalized Gold Nanorods with pH/NIR Dual Responsive Drug Release for Synergetic Targeted Photothermal Chemotherapy of Breast Cancer. Acs Applied Materials & Interfaces 2017, 9 (42), 36533-36547.
36. Cui, Y.; Xu, H.; Yue, Y.; Guo, Z.; Yu, J.; Chen, Z.; Gao, J.; Yang, Y.; Qian, G.; Chen, B., A Luminescent Mixed-Lanthanide Metal–Organic Framework Thermometer. Journal of the American Chemical Society 2012, 134 (9), 3979-3982.
37. De Lill, D. T.; de Bettencourt-Dias, A.; Cahill, C. L., Exploring lanthanide luminescence in metal-organic frameworks: synthesis, structure, and guest-sensitized luminescence of a mixed europium/terbium-adipate framework and a terbium-adipate framework. Inorg. Chem., 2007, 46 (10), 3960–3965.
38. Mekuria, S. L.; Addisu, K. D.; Chou, H. Y.; Hailemeskel, B. Z.; Tsai, H. C., Potential fluorescence and magnetic resonance imaging modality using mixed lanthanide oxide nanoparticles. Colloids Surf B Biointerfaces 2018, 167, 54-62.
39. Kumari, A.; Yadav, S. K.; Yadav, S. C., Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010, 75 (1), 1-18.
40. Cheng, Y.; Yu, S.; Zhen, X.; Wang, X.; Wu, W.; Jiang, X., Alginic acid nanoparticles prepared through counterion complexation method as a drug delivery system. ACS applied materials & interfaces 2012, 4 (10), 5325-5332.
41. Addisu, K. D.; Hailemeskel, B. Z.; Mekuria, S. L.; Andrgie, A. T.; Lin, Y.-C.; Tsai, H.-C., Bioinspired, Manganese-Chelated Alginate–Polydopamine Nanomaterials for Efficient in Vivo T 1-Weighted Magnetic Resonance Imaging. ACS applied materials & interfaces 2018, 10 (6), 5147-5160.
42. Park, J.; Brust, T. F.; Lee, H. J.; Lee, S. C.; Watts, V. J.; Yeo, Y., Polydopamine-Based Simple and Versatile Surface Modification of Polymeric Nano Drug Carriers. Acs Nano 2014, 8 (4), 3347-3356.
43. Sun, L.; Li, Q.; Zhang, L.; Xu, Z.; Kang, Y.; Xue, P., PEGylated Polydopamine Nanoparticles Incorporated with Indocyanine Green and Doxorubicin for Magnetically Guided Multimodal Cancer Therapy Triggered by Near-Infrared Light. ACS Applied Nano Materials 2017, 1 (1), 325-336.
44. Cheng, W.; Nie, J. P.; Xu, L.; Liang, C. Y.; Peng, Y.; Liu, G.; Wang, T.; Mei, L.; Huang, L. Q.; Zeng, X. W., pH-Sensitive Delivery Vehicle Based on Folic Acid-Conjugated Polydopamine-Modified Mesoporous Silica Nanoparticles for Targeted Cancer Therapy. Acs Applied Materials & Interfaces 2017, 9 (22), 18462-18473.
45. Wang, X.; Zhang, J.; Wang, Y.; Wang, C.; Xiao, J.; Zhang, Q.; Cheng, Y., Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation. Biomaterials 2016, 81, 114-124.
46. Hanahan, D.; Weinberg, Robert A., Hallmarks of Cancer: The Next Generation. Cell 2011, 144 (5), 646-674.
47. Mrowczynski, R., Polydopamine-Based Multifunctional (Nano)materials for Cancer Therapy. ACS Appl Mater Interfaces 2018, 10 (9), 7541-7561.
48. Cuenca, A. G.; Jiang, H.; Hochwald, S. N.; Delano, M.; Cance, W. G.; Grobmyer, S. R., Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 2006, 107 (3), 459-66.
49. Corrie, P. G., Cytotoxic chemotherapy: clinical aspects. Medicine 2008, 36 (1), 24-28.
50. Jackson, S. P.; Bartek, J., The DNA-damage response in human biology and disease. Nature 2009, 461 (7267), 1071-1078.
51. Ringborg, U.; Bergqvist, D.; Brorsson, B.; Cavallin-Stahl, E.; Ceberg, J.; Einhorn, N.; Frodin, J. E.; Jarhult, J.; Lamnevik, G.; Lindholm, C.; Littbrand, B.; Norlund, A.; Nylen, U.; Rosen, M.; Svensson, H.; Moller, T. R., The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001--summary and conclusions. Acta Oncol 2003, 42 (5-6), 357-365.
52. Aliperti, L. A.; Predina, J. D.; Vachani, A.; Singhal, S., Local and Systemic Recurrence is the Achilles Heel of Cancer Surgery. Annals of Surgical Oncology 2011, 18 (3), 603-607.
53. Jiang, J. X.; Keating, J. J.; De Jesus, E. M.; Judy, R. P.; Madajewski, B.; Venegas, O.; Okusanya, O. T.; Singhal, S., Optimization of the enhanced permeability and retention effect for near-infrared imaging of solid tumors with indocyanine green. American journal of nuclear medicine and molecular imaging 2015, 5 (4), 390-400.
54. Fedor, D.; Johnson, W. R.; Singhal, S., Local recurrence following lung cancer surgery: incidence, risk factors, and outcomes. Surg Oncol 2013, 22 (3), 156-61.
55. Jalde, S. S.; Chauhan, A. K.; Lee, J. H.; Chaturvedi, P. K.; Park, J. S.; Kim, Y. W., Synthesis of novel Chlorin e6-curcumin conjugates as photosensitizers for photodynamic therapy against pancreatic carcinoma. Eur J Med Chem 2018, 147, 66-76.
56. Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue, B. W.; Hasan, T., Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 2010, 110 (5), 2795-838.
57. Liu, S. Y.; Liang, Z. S.; Gao, F.; Luo, S. F.; Lu, G. Q., In vitro photothermal study of gold nanoshells functionalized with small targeting peptides to liver cancer cells. J Mater Sci Mater Med 2010, 21 (2), 65-74.
58. Norouzi, H.; Khoshgard, K.; Akbarzadeh, F., In vitro outlook of gold nanoparticles in photo-thermal therapy: a literature review. Lasers Med Sci 2018, 33 (4), 917-926.
59. Zhang, A. W.; Guo, W. H.; Qi, Y. F.; Wang, J. Z.; Ma, X. X.; Yu, D. X., Synergistic Effects of Gold Nanocages in Hyperthermia and Radiotherapy Treatment. Nanoscale Res Lett 2016, 11 (1), 279.
60. Sinha, R.; Kim, G. J.; Nie, S.; Shin, D. M., Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006, 5 (8), 09-17.
61. Tran, S.; DeGiovanni, P. J.; Piel, B.; Rai, P., Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med 2017, 6 (1), 1-21.
62. Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J., Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 2015, 200, 38-57.
63. Nicolas, J.; Mura, S.; Brambilla, D.; Mackiewicz, N.; Couvreur, P., Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 2013, 42 (3), 147-235.
64. das Neves, J.; Nunes, R.; Machado, A.; Sarmento, B., Polymer-based nanocarriers for vaginal drug delivery. Adv Drug Deliv Rev 2015, 92, 53-70.
65. Mizrahy, S.; Peer, D., Polysaccharides as building blocks for nanotherapeutics. Chemical Society Reviews 2012, 41 (7), 2623-2640.
66. Nitta, S. K.; Numata, K., Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 2013, 14 (1), 1629-54.
67. Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z., Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008, 60 (15), 1650-62.
68. Meka, V. S.; Sing, M. K. G.; Pichika, M. R.; Nali, S. R.; Kolapalli, V. R. M.; Kesharwani, P., A comprehensive review on polyelectrolyte complexes. Drug Discov Today 2017, 22 (11), 1697-1706.
69. Bourganis, V.; Karamanidou, T.; Kammona, O.; Kiparissides, C., Polyelectrolyte complexes as prospective carriers for the oral delivery of protein therapeutics. Eur J Pharm Biopharm 2017, 111, 44-60.
70. Quinones, J. P.; Peniche, H.; Peniche, C., Chitosan Based Self-Assembled Nanoparticles in Drug Delivery. Polymers 2018, 10 (3), 1-32.
71. Gibson, M. I.; O'Reilly, R. K., To aggregate, or not to aggregate? considerations in the design and application of polymeric thermally-responsive nanoparticles. Chem Soc Rev 2013, 42 (17), 7204-13.
72. Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Peppas, N. A.; Gurny, R., Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 2004, 57 (1), 19-34.
73. Lee, K. Y.; Mooney, D. J., Alginate: properties and biomedical applications. Prog Polym Sci 2012, 37 (1), 106-126.
74. Yang, J.-S.; Xie, Y.-J.; He, W., Research progress on chemical modification of alginate: A review. Carbohydrate polymers 2011, 84 (1), 33-39.
75. Lee, C.; Shin, J.; Lee, J. S.; Byun, E.; Ryu, J. H.; Um, S. H.; Kim, D. I.; Lee, H.; Cho, S. W., Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility. Biomacromolecules 2013, 14 (6), 2004-13.
76. Paques, J. P.; van der Linden, E.; van Rijn, C. J.; Sagis, L. M., Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci 2014, 209, 163-71.
77. Matai, I.; Gopinath, P., Chemically Cross-Linked Hybrid Nanogels of Alginate and PAMAM Dendrimers as Efficient Anticancer Drug Delivery Vehicles. Acs Biomaterials Science & Engineering 2016, 2 (2), 213-223.
78. Soppimath, K. S.; Aminabhavi, T. M.; Kulkarni, A. R.; Rudzinski, W. E., Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 2001, 70 (1-2), 1-20.
79. Brigger, I.; Dubernet, C.; Couvreur, P., Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews 2012, 64, 24-36.
80. Mora-Huertas, C. E.; Fessi, H.; Elaissari, A., Polymer-based nanocapsules for drug delivery. Int J Pharm 2010, 385 (1-2), 113-42.
81. Mahmoudi, M.; Serpooshan, V.; Laurent, S., Engineered nanoparticles for biomolecular imaging. Nanoscale 2011, 3 (8), 3007-26.
82. Huang, Y.; He, S.; Cao, W.; Cai, K.; Liang, X.-J., Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale 2012, 4 (20), 6135-6149.
83. Ding, X.; Liu, J. H.; Li, J. Q.; Wang, F.; Wang, Y. H.; Song, S. Y.; Zhang, H. J., Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy. Chem. Sci. 2016, 7 (11), 6695-6700.
84. Taylor, K. M. L.; Rieter, W. J.; Lin, W., Manganese-Based Nanoscale Metal−Organic Frameworks for Magnetic Resonance Imaging. Journal of the American Chemical Society 2008, 130 (44), 14358-14359.
85. Marckmann, P.; Skov, L.; Rossen, K.; Dupont, A.; Damholt, M. B.; Heaf, J. G.; Thomsen, H. S., Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. Journal of the American Society of Nephrology 2006, 17 (9), 2359-2362.
86. Ye, D. W.; Li, Y.; Gu, N., Magnetic labeling of natural lipid encapsulations with iron-based nanoparticles. Nano Research 2018, 11 (6), 2970-2991.
87. Thorek, D. L.; Chen, A. K.; Czupryna, J.; Tsourkas, A., Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 2006, 34 (1), 23-38.
88. Xiao, J.; Tian, X. M.; Yang, C.; Liu, P.; Luo, N. Q.; Liang, Y.; Li, H. B.; Chen, D. H.; Wang, C. X.; Li, L.; Yang, G. W., Ultrahigh relaxivity and safe probes of manganese oxide nanoparticles for in vivo imaging. Sci Rep 2013, 3, 3424.
89. Yu, X.; Wadghiri, Y. Z.; Sanes, D. H.; Turnbull, D. H., In vivo auditory brain mapping in mice with Mn-enhanced MRI. Nature neuroscience 2005, 8 (7), 961.
90. Na, H. B.; Lee, J. H.; An, K.; Park, Y. I.; Park, M.; Lee, I. S.; Nam, D. H.; Kim, S. T.; Kim, S. H.; Kim, S. W., Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angewandte Chemie 2007, 119 (28), 5493-5497.
91. Pan, D.; Schmieder, A. H.; Wickline, S. A.; Lanza, G. M., Manganese-based MRI contrast agents: past, present, and future. Tetrahedron 2011, 67 (44), 8431-8444.
92. Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B., Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chemical Reviews 1999, 99 (9), 2293-2352.
93. Caravan, P., Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chemical Society Reviews 2006, 35 (6), 512-523.
94. Boros, E.; Caravan, P., Structure–Relaxivity relationships of serum albumin targeted MRI probes based on a single amino acid Gd complex. Journal of medicinal chemistry 2013, 56 (4), 1782-1786.
95. Regueiro‐Figueroa, M.; Rolla, G. A.; Esteban‐Gómez, D.; de Blas, A.; Rodríguez‐Blas, T.; Botta, M.; Platas‐Iglesias, C., High Relaxivity Mn2+‐Based MRI Contrast Agents. Chemistry–A European Journal 2014, 20 (52), 17300-17305.
96. Troughton, J. S.; Greenfield, M. T.; Greenwood, J. M.; Dumas, S.; Wiethoff, A. J.; Wang, J.; Spiller, M.; McMurry, T. J.; Caravan, P., Synthesis and evaluation of a high relaxivity manganese (II)-based MRI contrast agent. Inorganic chemistry 2004, 43 (20), 6313-6323.
97. Luker, G. D.; Luker, K. E., Optical imaging: current applications and future directions. J Nucl Med 2008, 49 (1), 1-4.
98. Heffern, M. C.; Matosziuk, L. M.; Meade, T. J., Lanthanide probes for bioresponsive imaging. Chem Rev 2014, 114 (8), 4496-539.
99. Auzel, F., Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev 2004, 104 (1), 139-73.
100. Pelkmans, L.; Helenius, A., Endocytosis via caveolae. Traffic 2002, 3 (5), 311-20.
101. Gratton, S. E.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; DeSimone, J. M., The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 2008, 105 (33), 11613-8.
102. Yue, Z. G.; Wei, W.; Lv, P. P.; Yue, H.; Wang, L. Y.; Su, Z. G.; Ma, G. H., Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules 2011, 12 (7), 2440-6.
103. Prabhakar, U.; Maeda, H.; Jain, R. K.; Sevick-Muraca, E. M.; Zamboni, W.; Farokhzad, O. C.; Barry, S. T.; Gabizon, A.; Grodzinski, P.; Blakey, D. C., Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. AACR:. Cancer Res; 2013, 73(8), 1-7.
104. Holback, H.; Yeo, Y., Intratumoral drug delivery with nanoparticulate carriers. Pharm Res 2011, 28 (8), 1819-30.
105. Heldin, C. H.; Rubin, K.; Pietras, K.; Ostman, A., High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer 2004, 4 (10), 806-13.
106. Wang, X.; Wang, Y.; Chen, Z. G.; Shin, D. M., Advances of cancer therapy by nanotechnology. Cancer Res Treat 2009, 41 (1), 1-11.
107. Gao, W.; Chan, J. M.; Farokhzad, O. C., pH-Responsive nanoparticles for drug delivery. Mol Pharm 2010, 7 (6), 1913-20.
108. Yang, J. M.; Duan, Y. C.; Zhang, X. Z.; Wang, Y. J.; Yu, A., Modulating the cellular microenvironment with disulfide-containing nanoparticles as an auxiliary cancer treatment strategy. Journal of Materials Chemistry B 2016, 4 (22), 3868-3873.
109. Wu, M.; Zhang, D.; Zeng, Y.; Wu, L.; Liu, X.; Liu, J., Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy. Nanotechnology 2015, 26 (11), 1-14.
110. Ju, K. Y.; Lee, J. W.; Im, G. H.; Lee, S.; Pyo, J.; Park, S. B.; Lee, J. H.; Lee, J. K., Bio-inspired, melanin-like nanoparticles as a highly efficient contrast agent for T1-weighted magnetic resonance imaging. Biomacromolecules 2013, 14 (10), 3491-7.
111. Hermann, P.; Kotek, J.; Kubíček, V.; Lukeš, I., Gadolinium (III) complexes as MRI contrast agents: ligand design and properties of the complexes. Dalton Transactions 2008, (23), 3027-3047.
112. Fayad, Z. A.; Fallon, J. T.; Shinnar, M.; Wehrli, S.; Dansky, H. M.; Poon, M.; Badimon, J. J.; Charlton, S. A.; Fisher, E. A.; Breslow, J. L., Noninvasive in vivo high-resolution magnetic resonance imaging of atherosclerotic lesions in genetically engineered mice. Circulation 1998, 98 (15), 1541-1547.
113. Park, Y. I.; Kim, J. H.; Lee, K. T.; Jeon, K. S.; Bin Na, H.; Yu, J. H.; Kim, H. M.; Lee, N.; Choi, S. H.; Baik, S. I.; Kim, H.; Park, S. P.; Park, B. J.; Kim, Y. W.; Lee, S. H.; Yoon, S. Y.; Song, I. C.; Moon, W. K.; Suh, Y. D.; Hyeon, T., Nonblinking and Nonbleaching Upconverting Nanoparticles as an Optical Imaging Nanoprobe and T1 Magnetic Resonance Imaging Contrast Agent. Advanced Materials 2009, 21 (44), 4467-71.
114. Kueny‐Stotz, M.; Garofalo, A.; Felder‐Flesch, D., Manganese‐Enhanced MRI Contrast Agents: From Small Chelates to Nanosized Hybrids. European Journal of Inorganic Chemistry 2012, 2012 (12), 1987-2005.
115. Cai, X.; Gao, W.; Ma, M.; Wu, M.; Zhang, L.; Zheng, Y.; Chen, H.; Shi, J., A Prussian Blue‐Based Core–Shell Hollow‐Structured Mesoporous Nanoparticle as a Smart Theranostic Agent with Ultrahigh pH‐Responsive Longitudinal Relaxivity. Advanced Materials 2015, 27 (41), 6382-6389.
116. Caro, C.; García-Martín, M. L.; Pernia Leal, M., Manganese-Based Nanogels as pH Switches for Magnetic Resonance Imaging. Biomacromolecules 2017, 18 (5), 1617-1623.
117. Molina, M.; Asadian-Birjand, M.; Balach, J.; Bergueiro, J.; Miceli, E.; Calderon, M., Stimuli-responsive nanogel composites and their application in nanomedicine. Chemical Society Reviews 2015, 44 (17), 6161-6186.
118. Liu, K.; Shi, X.; Wang, T.; Ai, P.; Gu, W.; Ye, L., Terbium-doped manganese carbonate nanoparticles with intrinsic photoluminescence and magnetic resonance imaging capacity. Journal of Colloid and Interface Science 2017, 485, 25-31.
119. Xi, J.; Da, L.; Yang, C.; Chen, R.; Gao, L.; Fan, L.; Han, J., Mn2+-coordinated PDa@ DOX/Plga nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy. International journal of nanomedicine 2017, 12, 3331–3345.
120. Chen, Y. W.; Peng, Y. K.; Chou, S. W.; Tseng, Y. J.; Wu, P. C.; Wang, S. K.; Lee, Y. W.; Shyue, J. J.; Hsiao, J. K.; Liu, T. M., Mesoporous Silica Promoted Deposition of Bioinspired Polydopamine onto Contrast Agent: A Universal Strategy to Achieve Both Biocompatibility and Multiple Scale Molecular Imaging. Particle & Particle Systems Characterization, 2017,34, 1-12.
121. Perry, J. L.; Reuter, K. G.; Kai, M. P.; Herlihy, K. P.; Jones, S. W.; Luft, J. C.; Napier, M.; Bear, J. E.; DeSimone, J. M., PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett 2012, 12 (10), 5304-10.
122. Dong, L.; Zhang, P.; Lei, P.; Song, S.; Xu, X.; Du, K.; Feng, J.; Zhang, H., PEGylated GdF3:Fe Nanoparticles as Multimodal T1/T2-Weighted MRI and X-ray CT Imaging Contrast Agents. ACS Appl Mater Interfaces 2017, 9 (24), 20426-20434.
123. Cheng, Y.; Yu, S.; Zhen, X.; Wang, X.; Wu, W.; Jiang, X., Alginic acid nanoparticles prepared through counterion complexation method as a drug delivery system. ACS Appl Mater Interfaces 2012, 4 (10), 5325-32.
124. Wu, W.; Yao, W.; Wang, X.; Xie, C.; Zhang, J.; Jiang, X., Bioreducible heparin-based nanogel drug delivery system. Biomaterials 2015, 39, 260-8.
125. Kusakawa, S.; Machida, K.; Yasuda, S.; Takada, N.; Kuroda, T.; Sawada, R.; Okura, H.; Tsutsumi, H.; Kawamata, S.; Sato, Y., Characterization of in vivo tumorigenicity tests using severe immunodeficient NOD/Shi-scid IL2Rγ null mice for detection of tumorigenic cellular impurities in human cell-processed therapeutic products. Regenerative Therapy 2015, 1, 30-37.
126. Wang, X. L.; Jiang, Z. Y.; Shi, J. F.; Zhang, C. H.; Zhang, W. Y.; Wu, H., Dopamine-Modified Alginate Beads Reinforced by Cross-Linking via Titanium Coordination or Self-Polymerization and Its Application in Enzyme Immobilization. Industrial & Engineering Chemistry Research 2013, 52 (42), 14828-14836.
127. Hou, J. X.; Li, C.; Guan, Y.; Zhang, Y. J.; Zhu, X. X., Enzymatically crosslinked alginate hydrogels with improved adhesion properties. Polymer Chemistry 2015, 6 (12), 2204-2213.
128. Zhang, S.; Xu, K.; Darabi, M. A.; Yuan, Q.; Xing, M., Mussel-inspired alginate gel promoting the osteogenic differentiation of mesenchymal stem cells and anti-infection. Mater Sci Eng C Mater Biol Appl 2016, 69, 496-504.
129. Yan, J.; Yang, L. P.; Lin, M. F.; Ma, J.; Lu, X. H.; Lee, P. S., Polydopamine Spheres as Active Templates for Convenient Synthesis of Various Nanostructures. Small 2013, 9 (4), 596-603.
130. Ge, R.; Lin, M.; Li, X.; Liu, S.; Wang, W.; Li, S.; Zhang, X.; Liu, Y.; Liu, L.; Shi, F.; Sun, H.; Zhang, H.; Yang, B., Cu2+-Loaded Polydopamine Nanoparticles for Magnetic Resonance Imaging-Guided pH- and Near-Infrared-Light-Stimulated Thermochemotherapy. ACS Applied Materials & Interfaces 2017.
131. Krogsgaard, M.; Nue, V.; Birkedal, H., Mussel‐Inspired Materials: Self‐Healing through Coordination Chemistry. Chemistry-A European Journal 2016, 22 (3), 844-857.
132. Xu, Z., Mechanics of metal-catecholate complexes: the roles of coordination state and metal types. Sci Rep 2013, 3, 2914.
133. Liu, Y.; Ai, K.; Lu, L., Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chemical reviews 2014, 114 (9), 5057-5115.
134. Sundarrajan, P.; Eswaran, P.; Marimuthu, A.; Subhadra, L. B.; Kannaiyan, P., One pot synthesis and characterization of alginate stabilized semiconductor nanoparticles. Bulletin of the Korean Chemical Society 2012, 33 (10), 3218-3224.
135. Tan, B. J.; Klabunde, K. J.; Sherwood, P. M., XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. Journal of the American Chemical Society 1991, 113 (3), 855-861.
136. Chang, S.-L.; Anderegg, J.; Thiel, P., Surface oxidation of an Al Pd Mn quasicrystal, characterized by X-ray photoelectron spectroscopy. Journal of non-crystalline solids 1996, 195 (1-2), 95-101.
137. Vannerberg, N., ESCA-SPECTRA OF SODIUM AND POTASSIUM CYANIDE AND OF SODIUM AND POTASSIUM-SALTS OF HEXACYANOMETALLATES OF 1ST TRANSITION-METAL SERIES. Chemica Scripta 1976, 9 (3), 122-126.
138. Ding, X.; Liu, J.; Li, J.; Wang, F.; Wang, Y.; Song, S.; Zhang, H., Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy. Chem Sci 2016, 7 (11), 6695-6700.
139. Ahmad, M. W.; Xu, W.; Kim, S. J.; Baeck, J. S.; Chang, Y.; Bae, J. E.; Chae, K. S.; Park, J. A.; Kim, T. J.; Lee, G. H., Potential dual imaging nanoparticle: Gd2O3 nanoparticle. Scientific reports 2015, 5.
140. Mekuria, S. L.; Debele, T. A.; Tsai, H. C., Encapsulation of Gadolinium Oxide Nanoparticle (Gd2O3) Contrasting Agents in PAMAM Dendrimer Templates for Enhanced Magnetic Resonance Imaging in Vivo. ACS Appl Mater Interfaces 2017, 9 (8), 6782-6795.
141. Park, J. Y.; Baek, M. J.; Choi, E. S.; Woo, S.; Kim, J. H.; Kim, T. J.; Jung, J. C.; Chae, K. S.; Chang, Y.; Lee, G. H., Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T 1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T 1 MR images. ACS nano 2009, 3 (11), 3663-3669.
142. Xu, H.; Regino, C. A.; Bernardo, M.; Koyama, Y.; Kobayashi, H.; Choyke, P. L.; Brechbiel, M. W., Toward improved syntheses of dendrimer-based magnetic resonance imaging contrast agents: new bifunctional diethylenetriaminepentaacetic acid ligands and nonaqueous conjugation chemistry. J Med Chem 2007, 50 (14), 3185-93.
143. Li, Y.; Chen, T.; Tan, W.; Talham, D. R., Size-dependent MRI relaxivity and dual imaging with Eu0.2Gd0.8PO4.H2O nanoparticles. Langmuir 2014, 30 (20), 5873-9.
144. Niu, D.; Luo, X.; Li, Y.; Liu, X.; Wang, X.; Shi, J., Manganese-Loaded Dual-Mesoporous Silica Spheres for Efficient T1- and T2-Weighted Dual Mode Magnetic Resonance Imaging. ACS Applied Materials & Interfaces 2013, 5 (20), 9942-9948.
145. Yao, Y. Y.; Gedda, G.; Girma, W. M.; Yen, C. L.; Ling, Y. C.; Chang, J. Y., Magnetofluorescent Carbon Dots Derived from Crab Shell for Targeted Dual-Modality Bioimaging and Drug Delivery. ACS Appl Mater Interfaces 2017, 9 (16), 13887-13899.
146. Kim, D.; Lee, E. S.; Oh, K. T.; Gao, Z. G.; Bae, Y. H., Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small 2008, 4 (11), 2043-50.
147. Barge, A.; Cravotto, G.; Gianolio, E.; Fedeli, F., How to determine free Gd and free ligand in solution of Gd chelates. A technical note. Contrast media & molecular imaging 2006, 1 (5), 184-188.
148. Belleza, O. J. V.; Villaraza, A. J. L., Ion charge density governs selectivity in the formation of metal–Xylenol Orange (M–XO) complexes. Inorganic Chemistry Communications 2014, 47, 87-92.
149. Du, J. Z.; Sun, T. M.; Song, W. J.; Wu, J.; Wang, J., A Tumor‐Acidity‐Activated Charge‐Conversional Nanogel as an Intelligent Vehicle for Promoted Tumoral‐Cell Uptake and Drug Delivery. Angewandte Chemie 2010, 122 (21), 3703-3708.
150. Huang, Y.; Hu, L.; Zhang, T.; Zhong, H.; Zhou, J.; Liu, Z.; Wang, H.; Guo, Z.; Chen, Q., Mn(3)[Co(CN)(6)](2)@SiO(2) core-shell nanocubes: novel bimodal contrast agents for MRI and optical imaging. Sci Rep 2013, 3, 2647.
151. Akiyama, Y.; Mori, T.; Katayama, Y.; Niidome, T., The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice. Journal of Controlled Release 2009, 139 (1), 81-84.
152. Ghiani, S.; Capozza, M.; Cabella, C.; Coppo, A.; Miragoli, L.; Brioschi, C.; Bonafe, R.; Maiocchi, A., In vivo tumor targeting and biodistribution evaluation of paramagnetic solid lipid nanoparticles for magnetic resonance imaging. Nanomedicine 2017, 13 (2), 693-700.
153. Xiong, L.; Yang, T.; Yang, Y.; Xu, C.; Li, F., Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 2010, 31 (27), 7078-7085.
154. Ghiani, S.; Capozza, M.; Cabella, C.; Coppo, A.; Miragoli, L.; Brioschi, C.; Bonafè, R.; Maiocchi, A., In vivo tumor targeting and biodistribution evaluation of paramagnetic solid lipid nanoparticles for magnetic resonance imaging. Nanomedicine: Nanotechnology, Biology and Medicine 2017, 13 (2), 693-700.
155. Longmire, M.; Choyke, P. L.; Kobayashi, H., Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine-Uk 2008, 3 (5), 703-17.
156. Gao, H.; Liu, J.; Yang, C.; Cheng, T.; Chu, L.; Xu, H.; Meng, A.; Fan, S.; Shi, L.; Liu, J., The impact of PEGylation patterns on the in vivo biodistribution of mixed shell micelles. International journal of nanomedicine 2013, 8, 4229.
157. Ma, Y.; Mou, Q.; Sun, M.; Yu, C.; Li, J.; Huang, X.; Zhu, X.; Yan, D.; Shen, J., Cancer Theranostic Nanoparticles Self-Assembled from Amphiphilic Small Molecules with Equilibrium Shift-Induced Renal Clearance. Theranostics 2016, 6 (10), 1703-16.
158. Bray, F.; Jemal, A.; Grey, N.; Ferlay, J.; Forman, D., Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. The lancet oncology 2012, 13 (8), 790-801.
159. Ghaderi, S.; Ramesh, B.; Seifalian, A. M., Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: a review. Journal of drug targeting 2011, 19 (7), 475-486.
160. Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T., Quantum dots versus organic dyes as fluorescent labels. Nature methods 2008, 5 (9), 763.
161. Bunzli, J. C., Lanthanide luminescence for biomedical analyses and imaging. Chem Rev 2010, 110 (5), 2729-55.
162. Park, Y. I.; Kim, H. M.; Kim, J. H.; Moon, K. C.; Yoo, B.; Lee, K. T.; Lee, N.; Choi, Y.; Park, W.; Ling, D.; Na, K.; Moon, W. K.; Choi, S. H.; Park, H. S.; Yoon, S. Y.; Suh, Y. D.; Lee, S. H.; Hyeon, T., Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv Mater 2012, 24 (42), 5755-61.
163. Dasari, S.; Singh, S.; Sivakumar, S.; Patra, A. K., Dual‐Sensitized Luminescent Europium (ΙΙΙ) and Terbium (ΙΙΙ) Complexes as Bioimaging and Light‐Responsive Therapeutic Agents. Chemistry–A European Journal 2016, 22 (48), 17387-17396.
164. Hemmila, I.; Laitala, V., Progress in lanthanides as luminescent probes. Journal of Fluorescence 2005, 15 (4), 529-542.
165. Lee, Y.; Lee, H.; Kim, Y. B.; Kim, J.; Hyeon, T.; Park, H.; Messersmith, P. B.; Park, T. G., Bioinspired Surface Immobilization of Hyaluronic Acid on Monodisperse Magnetite Nanocrystals for Targeted Cancer Imaging. Adv Mater 2008, 20 (21), 4154-4157.
166. Shu, F. P.; Lv, D. J.; Song, X. L.; Huang, B.; Wang, C.; Yu, Y. Z.; Zhao, S. C., Fabrication of a hyaluronic acid conjugated metal organic framework for targeted drug delivery and magnetic resonance imaging. Rsc Advances 2018, 8 (12), 6581-6589.
167. Low, P. S.; Henne, W. A.; Doorneweerd, D. D., Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 2008, 41 (1), 120-9.
168. Chen, Q.; Wang, X.; Chen, F.; Zhang, Q.; Dong, B.; Yang, H.; Liu, G.; Zhu, Y., Functionalization of upconverted luminescent NaYF4: Yb/Er nanocrystals by folic acid–chitosan conjugates for targeted lung cancer cell imaging. Journal of Materials Chemistry 2011, 21 (21), 7661-7667.
169. Goodman, T. T.; Ng, C. P.; Pun, S. H., 3-D tissue culture systems for the evaluation and optimization of nanoparticle-based drug carriers. Bioconjug Chem 2008, 19 (10), 1951-9.
170. Gong, X.; Lin, C.; Cheng, J.; Su, J.; Zhao, H.; Liu, T.; Wen, X.; Zhao, P., Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing. PLoS One 2015, 10 (6), e0130348.
171. Kim, T. H.; Mount, C. W.; Gombotz, W. R.; Pun, S. H., The delivery of doxorubicin to 3-D multicellular spheroids and tumors in a murine xenograft model using tumor-penetrating triblock polymeric micelles. Biomaterials 2010, 31 (28), 7386-7397.
172. Minchinton, A. I.; Tannock, I. F., Drug penetration in solid tumours. Nat Rev Cancer 2006, 6 (8), 583-92.
173. Lee, S. Y.; Park, J. H.; Ko, S. H.; Shim, J. S.; Kim, D. D.; Cho, H. J., Mussel-Inspired Hyaluronic Acid Derivative Nanostructures for Improved Tumor Targeting and Penetration. ACS Appl Mater Interfaces 2017, 9 (27), 22308-22320.
174. Xu, W. L.; Bony, B. A.; Kim, C. R.; Baeck, J. S.; Chang, Y. M.; Bae, J. E.; Chae, K. S.; Kim, T. J.; Lee, G. H., Mixed lanthanide oxide nanoparticles as dual imaging agent in biomedicine. Scientific Reports 2013, 3.
175. Bridot, J. L.; Faure, A. C.; Laurent, S.; Riviere, C.; Billotey, C.; Hiba, B.; Janier, M.; Josserand, V.; Coll, J. L.; Elst, L. V.; Muller, R.; Roux, S.; Perriat, P.; Tillement, O., Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 2007, 129 (16), 5076-84.
176. Wu, S. Y.; Chou, H. Y.; Yuh, C. H.; Mekuria, S. L.; Kao, Y. C.; Tsai, H. C., Radiation‐Sensitive Dendrimer‐Based Drug Delivery System. Advanced Science 2018, 5 (2).
177. Wu, S. Y.; Debele, T. A.; Kao, Y. C.; Tsai, H. C., Synthesis and Characterization of Dual-Sensitive Fluorescent Nanogels for Enhancing Drug Delivery and Tracking Intracellular Drug Delivery. Int J Mol Sci 2017, 18 (5), 1090.
178. Chiu, S. H.; Gedda, G.; Girma, W. M.; Chen, J. K.; Ling, Y. C.; Ghule, A. V.; Ou, K. L.; Chang, J. Y., Rapid fabrication of carbon quantum dots as multifunctional nanovehicles for dual-modal targeted imaging and chemotherapy. Acta Biomater 2016, 46, 151-164.
179. Teng, Y.; Xie, X. Y.; Walker, S.; White, D. T.; Mumm, J. S.; Cowell, J. K., Evaluating human cancer cell metastasis in zebrafish. Bmc Cancer 2013, 13 (1), 453.
180. Mauro, M., Dynamic Metal–Ligand Bonds as Scaffolds for Autonomously Healing Multi‐Responsive Materials. European Journal of Inorganic Chemistry 2018, 2018 (20-21), 2090-2100.
181. Zhou, W. H.; Lu, C. H.; Guo, X. C.; Chen, F. R.; Yang, H. H.; Wang, X. R., Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition. Journal of Materials Chemistry 2010, 20 (5), 880-883.
182. Kattel, K.; Park, J. Y.; Xu, W.; Kim, H. G.; Lee, E. J.; Bony, B. A.; Heo, W. C.; Lee, J. J.; Jin, S.; Baeck, J. S.; Chang, Y.; Kim, T. J.; Bae, J. E.; Chae, K. S.; Lee, G. H., A facile synthesis, in vitro and in vivo MR studies of d-glucuronic acid-coated ultrasmall Ln(2)O(3) (Ln = Eu, Gd, Dy, Ho, and Er) nanoparticles as a new potential MRI contrast agent. ACS Appl Mater Interfaces 2011, 3 (9), 3325-34.
183. Zheng, R.; Wang, S.; Tian, Y.; Jiang, X.; Fu, D.; Shen, S.; Yang, W., Polydopamine-Coated Magnetic Composite Particles with an Enhanced Photothermal Effect. ACS Applied Materials & Interfaces 2015, 7 (29), 15876-15884.
184. Shunmugam, R.; Tew, G. N., Unique emission from polymer based lanthanide alloys. J Am Chem Soc 2005, 127 (39), 13567-72.
185. Bazzi, R.; Flores, M. A.; Louis, C.; Lebbou, K.; Zhang, W.; Dujardin, C.; Roux, S.; Mercier, B.; Ledoux, G.; Bernstein, E.; Perriat, P.; Tillement, O., Synthesis and properties of europium-based phosphors on the nanometer scale: Eu2O3, Gd2O3:Eu, and Y2O3:Eu. J Colloid Interface Sci 2004, 273 (1), 191-7.
186. Wang, F.; Pauletti, G. M.; Wang, J.; Zhang, J.; Ewing, R. C.; Wang, Y.; Shi, D., Dual surface‐functionalized janus nanocomposites of polystyrene/Fe3O4@ SiO2 for simultaneous tumor cell targeting and stimulus‐induced drug release. Advanced Materials 2013, 25 (25), 3485-3489.
187. Liu, H.; Li, Z.; Sun, Y.; Geng, X.; Hu, Y.; Meng, H.; Ge, J.; Qu, L., Synthesis of Luminescent Carbon Dots with Ultrahigh Quantum Yield and Inherent Folate Receptor-Positive Cancer Cell Targetability. Sci Rep-Uk 2018, 8 (1), 1086.
188. Chowdhuri, A. R.; Laha, D.; Pal, S.; Karmakar, P.; Sahu, S. K., One-pot synthesis of folic acid encapsulated upconversion nanoscale metal organic frameworks for targeting, imaging and pH responsive drug release. Dalton Trans 2016, 45 (45), 18120-18132.
189. Zhao, J.; Yang, H.; Li, J.; Wang, Y.; Wang, X., Fabrication of pH-responsive PLGA(UCNPs/DOX) nanocapsules with upconversion luminescence for drug delivery. Sci Rep-Uk 2017, 7 (1), 18014.
190. Xue, P.; Sun, L.; Li, Q.; Zhang, L.; Guo, J.; Xu, Z.; Kang, Y., PEGylated polydopamine-coated magnetic nanoparticles for combined targeted chemotherapy and photothermal ablation of tumour cells. Colloids Surf B Biointerfaces 2017, 160, 11-21.
191. Feng, S.; Zhang, H.; Yan, T.; Huang, D.; Zhi, C.; Nakanishi, H.; Gao, X. D., Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drugs. Int J Nanomedicine 2016, 11, 4573-4582.
192. Stubbs, M.; McSheehy, P. M.; Griffiths, J. R.; Bashford, C. L., Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 2000, 6 (1), 15-9.
193. Tian, L.; Bae, Y. H., Cancer nanomedicines targeting tumor extracellular pH. Colloids Surf B Biointerfaces 2012, 99, 116-26.
194. Zhang, Z. Y.; Xu, Y. D.; Ma, Y. Y.; Qiu, L. L.; Wang, Y.; Kong, J. L.; Xiong, H. M., Biodegradable ZnO@ polymer core–shell nanocarriers: pH‐triggered release of doxorubicin in vitro. Angewandte Chemie International Edition 2013, 52 (15), 4127-4131.
195. Kang, Y. F.; Li, Y. H.; Fang, Y. W.; Xu, Y.; Wei, X. M.; Yin, X. B., Carbon Quantum Dots for Zebrafish Fluorescence Imaging. Sci Rep-Uk 2015, 5, 11835.
196. Liu, C. W.; Xiong, F.; Jia, H. Z.; Wang, X. L.; Cheng, H.; Sun, Y. H.; Zhang, X. Z.; Zhuo, R. X.; Feng, J., Graphene-based anticancer nanosystem and its biosafety evaluation using a zebrafish model. Biomacromolecules 2013, 14 (2), 358-66.
197. Lee, K. J.; Nallathamby, P. D.; Browning, L. M.; Osgood, C. J.; Xu, X. H., In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 2007, 1 (2), 133-43.
198. Gao, X.; Yu, T.; Xu, G.; Guo, G.; Liu, X.; Hu, X.; Wang, X.; Liu, Y.; Mao, Q.; You, C.; Zhou, L., Enhancing the anti-glioma therapy of doxorubicin by honokiol with biodegradable self-assembling micelles through multiple evaluations. Sci Rep-Uk 2017, 7, 43501.
199. Xu, Y.; Li, Y.-H.; Wang, Y.; Cui, J.-L.; Yin, X.-B.; He, X.-W.; Zhang, Y.-K., 13 C-engineered carbon quantum dots for in vivo magnetic resonance and fluorescence dual-response. Analyst 2014, 139 (20), 5134-5139.
200. Gutierrez-Lovera, C.; Vazquez-Rios, A. J.; Guerra-Varela, J.; Sanchez, L.; de la Fuente, M., The Potential of Zebrafish as a Model Organism for Improving the Translation of Genetic Anticancer Nanomedicines. Genes (Basel) 2017, 8 (12), 349.
201. Quah, B. J.; Warren, H. S.; Parish, C. R., Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc 2007, 2 (9), 2049-56.
202. Yang, J.; Shimada, Y.; Olsthoorn, R. C.; Snaar-Jagalska, B. E.; Spaink, H. P.; Kros, A., Application of Coiled Coil Peptides in Liposomal Anticancer Drug Delivery Using a Zebrafish Xenograft Model. ACS Nano 2016, 10 (8), 7428-35.
203. Zhao, Y.; Huang, X.; Ding, T. W.; Gong, Z., Enhanced angiogenesis, hypoxia and neutrophil recruitment during Myc-induced liver tumorigenesis in zebrafish. Sci Rep-Uk 2016, 6, 31952.

QR CODE