簡易檢索 / 詳目顯示

研究生: 郭章正
Chang-Cheng Kuo
論文名稱: 離子型界面活性劑吸附動力學理論探討
A theoretical study of Ionic Surfactant Adsorption Kinetic
指導教授: 林析右
Shi-Yow Lin
口試委員: 蔡伸隆
Shen-Long Tsai
陳立仁
Li-Jen Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 49
中文關鍵詞: 離子型界面活性劑吸附動力學
外文關鍵詞: ionic surfactant, adsorption kinetic
相關次數: 點閱:295下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗室利用懸掛氣泡影像數位化測量儀,量測加入100及300 mM NaCl之陰離子型界面活性劑(sodium dodecylsulfate, SDS)水溶液的動態表面張力。並將實驗所得之平衡及動態張力數據與理論質傳模型做最適化比對,以探討SDS界劑水溶液之吸附動力學。由於實驗部分有其困難度,因此量測動態表面張力之實驗由廖育青同學完成,本研究僅使用其實驗數據,以驗證理論質傳模型。
截至目前為止,僅有少數文獻將溶液中之靜電荷作用力或在氣-液界面形成之電雙層對吸/脫附及擴散程序作用之效應,導入動態模型中。究其因為一般離子型界劑之動態表面張力通常在一秒左右即達平衡值,因此極難取得離子型界劑分子在水溶液中之完整的動態表面張力。很幸運地,本研究所探討之SDS界劑水溶液(添加100及300 mM之NaCl),可藉由懸掛氣泡影像測量儀獲得較完整之動態表面張力數據。
除了不易獲得完整之離子型界劑的動態表面張力以外,文獻對於離子型界劑吸附至氣-液界面之動力學的描述亦過於簡單,其僅考慮:已有離子型界劑吸附之界面與溶液中之界劑,因帶有同性之電荷所產生之排斥力,而減緩界劑之吸附速率。在本研究中,不僅考慮上述之排斥力對吸附程序之影響,亦探討此排斥力對脫附程序之影響,且假設此排斥力在脫附程序中,扮演一加速脫附之角色。
本研究使用三種吸附等溫線(ionic-Langmuir、ionic-Frumkin及ionic-generalized Frumkin)來模擬平衡表面張力數據。若假設SDS分子由水溶液中吸附至氣-液界面之質傳機制為擴散控制,並以理論動態張力曲線與動態張力數據做最適化比對,可得其擴散係數約為12×10-6 cm2/s。由於此擴散係數遠低於Wilke-Chang equation所預測之理論擴散係數(5.78×10-6 cm2/s),故SDS分子由水溶液中吸附至氣-液界面之質傳機制應為混合控制。
在SDS分子由水溶液中吸附至氣-液界面之質傳機制為混合控制之假設下,擴散係數設定為Wilke-Chang equation所預測之5.78×10-6 cm2/s,並以不同吸附等溫線模式進行模擬,其理論動態張力曲線與動態張力數據吻合之情形雖可接受,但仍不如擴散控制,且所得之吸附速率常數也無法隨界劑濃度之變化而呈一定值,因此本研究用以描述離子型界劑分子由水溶液中吸附至氣-液界面之理論質傳模式尚有修正之空間。


The dynamic surface tension for the adsorption of anionic surfactant SDS (sodium dodecylsulfate) in aqueous NaCl solution onto a clean air-water interface was measured by using a video-enhanced pendant bubble tensionmeter. To study the adsorption kinetics of SDS, comparisons were made for the entire relaxation period of the tension data and the ionic model predictions.
So far, only several articles consider the electrostatic effect on the mass transport process because of the difficulty on measuring a complete set of dynamic surface tension of ionic surfactant solution. The time required for reaching the equilibrium surface tension is less than 1 second for most ionic surfactants in pure water. Therefore a solvent with different concentration of mM NaCl was used. This this study we study the adsorption kinetics of SDS aqueous solution with 100 and 300 mM NaCl.
Three adsorption isotherms (ionic-Langmuir, ionic-Frumkin and ionic-generalized Frumkin) were applied on simulating the equilibrium and dynamic surface tensions. The ionic-Frumkin model describes better the surface tension data. When the adsorption transport was assumed to be diffusion-controlled, a diffusivity of SDS molecules was evaluated from the best-fit with the dynamic surface tension profiles and a value of D=12×10-6 cm2/s was resulted. This diffusivity is significantly lower than what the Wilke-Chang equation predicts (5.78×10-6 cm2/s).
The mass transport is therefore considered to be mixed-controlled with D= 5.78×10-6 cm2/s. The theoretical mixed controlled tension curves fitted the dynamic surface tension data nearly as well as the diffusion-control curves.

中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖目錄 V 表目錄 VIII 第一章 簡介 1 1.1 界面活性劑的特性 1 1.2 界面活性劑的分類 3 1.3 研究背景與主題 4 第二章 理論基礎 6 2.1 界劑由溶液本體傳輸至氣/液界面之質傳理論 6 2.2 界劑分子在水溶液中之擴散行為 8 2.3 吸附動力學理論模式與吸附等溫線 11 2.4 狀態方程式 15 第三章 研究方法 17 3.1 模擬參數之決定 17 3.2 理論動態表面張力之計算 18 第四章 理論模擬結果 21 4.1 SDS+100 mM NaCl 之模擬結果 21 4.2 SDS+300 mM NaCl 之模擬結果 38 第五章 結論與建議 45 參考文獻 47

1. 張有義、郭蘭生編譯,〝膠體及界面化學入門〞,高立圖書有限公司,第四章(1999)。
2. Myers, D. “Surfaces, Interfaces, and Colloids: Principles and Applications”; 3. Wiley-Vichy: New York (1999).
3. 刈米孝夫 〝界面活性劑的原理與應用〞,王鳳英編譯:高立圖書有限公司,第一章、第七章 (1990)。
4. 李雅琪,〝聚氧乙烯系非離子型界劑之吸附暨聚集行為研究〞,國立臺灣大學化學工程所博士論文 (2002)。
5. J. T. Davies, “Adsorption of long-chain ions I”, Proc. R. SOC. London A, 1958, 245, 417.
6. J. T. Davies, “Adsorption of long-chain ions II”, Proc. R. SOC. London A, 1958, 245, 426.
7. S. S. Dukhin, R. Miller, G. Kretzschmar, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces. 1.The effect of the electric double layer under quasi-equilibrium conditions on adsorption kinetics”, Colloid Polym. Sci, 1983, 261, 335.
8. R. Miller, S. S. Dukhin, G. Kretzschmar, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces. 2.Numerical calculations of influence of a quasi-equilibrium electric double layer”, Colloid Polym. Sci, 1985, 263, 420.
9. R. P. Borwanker, D. T. Wasan, “The kinetics of adsorption of ionic surfactants at gas-liquid surfaces”, Chem. Eng. Sci., 1986, 41, 199.
10. R. P. Borwanker, D. T. Wasan, “Equilibrium and dynamics of adsorption of surfactants at fluid-fluid interfaces”, Chem. Eng. Sci., 1988, 43, 1323.
11. S. S. Dukhin, R. Miller, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces. 3.Generalization of the model”, Chem. Eng. Sci., 1991, 269, 923.
12. C. H. Chang, E. I. Franses, “Modified Langmuir-Hinselwood kinetics for dynamic adsorption of surfactants at the air water interface”, Colloids Surfaces, 1992, 69, 189.
13. C. H. Chang, E. I. Franses, “Dynamic surface tension behavior of aqueous solutions of N-dodecyl-N,N dimethyl aminobetaine chlorohydrate”, Colloid Polym. Sci, 1994, 272, 447.
14. C. A. MacLeod, C. J. Radke, “Charge effects in the transient adsorption of ionic”, Langmuir, 1994, 10, 3555.
15. S. S. Datwani, K. J. Stebe, “Surface tension of an anionic surfactant: equilibrium, dynamics, and analysis for Aerosol-OT”, Langmuir, 2001, 17, 4287.
16. V. N. Truskett, C. A. Rosslee, N. L. Abbott, “Redox-dependent surface tension and surface phase transitions of a ferrocenyl surfactant: equilibrium and dynamic analysis with fluorescence images”, Langmuir, 1996, 19, 428.
17. S. Hachisua, “Equation of state of ionized monolayers”, J. Colloid Interface Sci., 1970, 33, 445.
18. V.V. Kalinin, C.J. Radke, “An ion-binding model for ionic surfactant adsorption at aqueous-fluid interfaces”, Colloids Surf. A., 1996, 114, 337.
19. H. Diamant, and D. Andelman, “Kinetics of surfactant adsorption at fluid-fluid interfaces”, J. Phys. Chem., 1996, 100, 13732.
20. H. Diamant, and D. Andelman, “Kinetics of surfactant adsorption: the free energy approach”, Colloids Surf. A., 2001, 183, 259.
21. P. Warszynski, W. Barzyk, K. Lunkenheimer, H. Fruhner, “Surface tension and surface potential of Na n-Dodecyl sulfate at the air-solution interface: Model and Experiment”, J. Phys. Chem. B, 1998, 102, 10948.
22. P. A. Kralchevsky, K. D. Danov, G. Broze, A. Mehreteab, “Thermodynamics of ionic surfactant adsorption with account for the counterion binding: effect of salts of various valency”, Langmuir, 1999, 15, 2351.
23. K. D. Danov, V. L. Kolev, P. A. Kralchevsky, G. Broze, A. Mehreteab, “Adsorption kinetics of ionic surfactants after a large initial perturbation. Effect of surface elasticity”, Langmuir, 2000, 16, 2942.
24. A. J. Prosser, E. I. Franses, “Adsorption and surface tension of ionic surfactants at the air-water interface: review and evaluation of equilibrium models”, Colloids Surf. A., 2001, 178, 1.
25. P. Warszynski, K. Lunkenheimer, G. Czichocki, “Effect of counterions on the adsorption of ionic surfactants at fluid-fluid interfaces”, Langmuir, 2002, 18, 2506.
26. V. L. Kolev, K. D. Danov, P. A. Kralchevsky, G. Broze, A. Mehreteab, “Comparison of the van der Waals and Frumkin adsorption isotherms for addium dodecyl sulfate at various salt concentrations”, Langmuir, 2002, 18, 9106.
27. G. Para, E. Jarek, P. Warszynski, Z. Adamczyk, K. P. Ananthapadmanabhan, A. Lips, “Effect of electrolytes on surface tension of ionic surfactant solutions”, Colloids Surf. A., 2003, 222, 213.
28. P. A. Kralchevsky, K. D. Danov, V. L. Kolev, G. Broze, A. Mehreteab, “Effect of nonionic admixtures on the adsorption of ionic surfactant at fluid interfaces I. sodium dodecyl sulfate and dodecanol”, Langmuir, 2003, 19, 504.
29. A. J. Prosser, E. I. Franses, “New thermodynamic/electrostatic models of adsorption and tension equilibria of aqueous ionic surfactant mixtures: application to sodium dodecyl sulfate/sodium dodecyl sulfonate systems”, J. Colloid Interface Sci., 2003, 263, 606.
30. D. S. Valkovska, G. C. Shearman, C. D. Bain, R. C. Darton, J. Eastoe, “Adsorption of ionic surfactants at an Expanding air-water interface”, Langmuir, 2004, 20, 4436.
31. T. D. Gurkova, D. T. Dimitrovaa, K. G. Marinovaa, C. Bilke-Crauseb, C. Gerberb, I. B. Ivanov, “Ionic surfactants on fluid interfaces: determination of the adsorption; role of the salt and the type of the hydrophobic phase”, Colloids Surf. A., 2005, 261, 29.
32. G. Para, E. Jarek, P. Warszynski, “The surface tension of aqueous solutions of cetyltrimethylammonium cationic surfactants in presence of bromide and chloride counterions”, Colloids Surf. A., 2005, 261, 65.
33. P. Koelsch, H. Motschmann, “Varying the counterions at a charged interface”, Langmuir, 2005, 21, 3436.
34. I. B. Ivanov, K. P. Ananthapadmanabhan, A. Lips, “Adsorption and structure of the adsorbed layer of ionic surfactants”, Adv. Colloid Interface Sci., 2006, 123, 189.
35. G. Para, P. Warszynski, A. Lips, “A cationic surfactant adsorption in the presence of divalent ions”, Colloids Surf. A., 2007, 300, 346.
36. J. Penfold, I. Tucker, R. K. Thomas, D. J. F. Taylor, X. L. Zhang, C. Bell, C. Breward, P. Howell, “The interaction between sodium alkyl sulfate surfactants and the oppositely charged polyelectrolyte, polyDMDAAC, at the air-water interface: the role of alkyl chain length and electrolyte and comparison with theoretical predictions”, Langmuir., 2007, 23, 3128.
37. E. D. Manev, S. V. Sazdanova, R. Tsekov, S. I. Karakashev, A. V. Nguyen, “Adsorption of ionic surfactants”, Colloids Surf. A., 2008, 319, 29.
38. J. Wegrzynska, G. Para, J. Chlebicki, P. Warszynski, K. A. Wilk, “Adsorption of multiple ammonium salts at the air/solution interface”, Langmuir, 2008, 24, 3171.
39. R. P. Borwankar, D. T. Wasan, “The kinetics of adsorption of surface active agents at gas-liquid surfaces”, Chem. Eng. Sci., 1983, 38, 1637.
40. S. Y. Lin, Ph. D. Dissertation, City University of New York, New York, (1991).
41. K. Stebe, S. Y. Lin, “Dynamic surface tension and surfactant mass transfer kinetics: measurement techniques and analysis, ” in Handbook of surfaces and interfaces of materials: Surface and interface analysis and properties; Nalwa, H. S., Ed.; Academic Press: San Diego, (2001).
42. A. F. H. Ward, L. Tordai, “Time dependence of boundary tensions of solutions. I. the role diffusion in time-effect”, J. Chem. Phys. 1946, 14, 453.
43. R. Aveyard, D. A. Haydon, An Introduction to the Principles of Surface Chemistry; Cambridge University Press: Cambridge, (1973).
44. V. B. Fainerman, “Theory and experiment on the measurement of kinetic rate constants for surfactant exchange at an air/water interface”, Colloid J. USSR, 1977,39, 91.
45. A. Z. Frumkin, Phys. Chem. (Leipzig), 1925, 116, 466.
46. S. Y. Lin, W. J. Wang, C. T. Hsu, “Adsorption kinetics of nonanol at the air-water interface: considering molecular interaction or aggregation within surface layer”, Langmuir, 1997, 13, 6211.
47. J. F. Baret, “State, electrical and rheological properties of model and dioxin isolated lignin films at the air-water interface”, J. Colloid Interface Sci., 1969, 30, 1.
48. J. F. Baret, “Fast adorption at the liquid-gas interface”, J. Phys. Chem., 1968, 72, 2755.
49. D. C. England, J. C. Berg, “Surface fractionation of multicomponent oil mixtures”, AIChE, 1971, 17, 313.
50. 廖育青,〝十二烷基硫酸鈉界面活性劑水溶液添加鹽類之吸附動力學探討〞,國立臺灣科技大學化學工程所碩士論文 (2012)。

QR CODE