簡易檢索 / 詳目顯示

研究生: 力午天
Muhammad Wito Malik
論文名稱: 學習式軌跡引導控制的虛擬測試
Virtual testing system with trajectory-guided control learned by others
指導教授: 陳郁堂
Yie-Tarng Chen
方文賢
Wen-Hsien Fang
口試委員: 陳郁堂
Yie-Tarng Chen
方文賢
Wen-Hsien Fang
陳省隆
Hsing-Lung Chen
呂政修
Jenq-Shiou Leu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 45
中文關鍵詞: 虛擬測試系統CARLA模擬強化學習控制預測
外文關鍵詞: Virtual Testing System, CARLA, Simulation, Reinforcement Learning, Control Prediction
相關次數: 點閱:311下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文介紹了一種使用學習車輛 (LAV) 系統進行自動駕駛的新方法,利用鳥瞰圖 (BEV) 圖像作為感知的主要來源,並根據信息訓練周圍車輛以生成其運動預測,使它們能夠預測並對附近車輛的潛在動作做出反應。此外,我們建議對 LAV 模型進行改進,通過在模型中添加一個控制分支來進行直接預測控制,從而解決高曲率道路和陡峭道路等關鍵道路條件,而無需 PID 控製過程。這項研究的最終目標是開發一種先進的 AI 智能代理,能夠以無與倫比的效率和可靠性在複雜和動態的環境中導航,使用CARLA 模擬器作為主要環境。


    This thesis presents a novel approach to autonomous driving using the
    Learning From Vehicle (LAV) system which utilizes bird’s eye view (BEV)
    images as the primary perception source and trains on surrounding vehicle
    information to generate predictions of their movements, enabling it to an-
    ticipate and respond to potential actions of nearby vehicles. Additionally,
    we propose an improvement to the LAV model to tackle critical road con-
    ditions such as high curvature roads and steep roads, by adding a control
    branch to the model to predict control directly without the need for a PID
    control process. The Trajectory Guided Control Prediction (TCP) approach
    also utilizes RGB camera data and incorporates elements of Reinforcement
    Learning to train an intelligent model. The ultimate goal of this research is
    to develop a cutting-edge AI-powered agent that can navigate complex and
    dynamic environments with unparalleled efficiency and reliability using
    the CARLA simulator as the main environment.

    Recommendation Letter Approval Letter Abstract in Chinese Abstract in English Acknowledgements Contents List of Figures List of Tables List of Algorithms 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Behavior prediction . . . . . . . . . . . . . . . . . . . . . 8 2.3 Learning-based motion planning . . . . . . . . . . . . . . 8 3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1 Data Collecting . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Intelligent Model . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Agent Simulation . . . . . . . . . . . . . . . . . . . . . . 18 4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 20 4.1.1 Simulation Environmet . . . . . . . . . . . . . . . 20 4.1.2 Data Collection . . . . . . . . . . . . . . . . . . . 21 4.1.3 Agent Training . . . . . . . . . . . . . . . . . . . 23 4.1.4 Evaluation Metrics . . . . . . . . . . . . . . . . . 23 4.1.5 Experimental Design . . . . . . . . . . . . . . . . 25 4.1.6 Ethical Considerations . . . . . . . . . . . . . . . 25 4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . 27 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    [1] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open urban driving
    simulator,” in Proceedings of the 1st Annual Conference on Robot Learning, 2017, pp. 1–16.
    [2] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
    algorithms,” arXiv preprint arXiv:1707.06347, 2017.
    [3] D. Frossard, S. Da Suo, S. Casas, J. Tu, and R. Urtasun, “Strobe: Streaming object detection from
    lidar packets,” in Conference on Robot Learning. PMLR, 2021, pp. 1174–1183.
    [4] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Pointpillars: Fast encoders for
    object detection from point clouds,” in Proceedings of the IEEE/CVF conference on computer vision
    and pattern recognition, 2019, pp. 12 697–12 705.
    [5] T. Yin, X. Zhou, and P. Krahenbuhl, “Center-based 3d object detection and tracking,” in Proceedings
    of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 11 784–11 793.
    [6] J. Levinson, M. Montemerlo, and S. Thrun, “Map-based precision vehicle localization in urban envi-
    ronments.” in Robotics: science and systems, vol. 4, no. Citeseer. Atlanta, GA, USA, 2007, p. 1.
    [7] W. Luo, B. Yang, and R. Urtasun, “Fast and furious: Real time end-to-end 3d detection, tracking
    and motion forecasting with a single convolutional net,” in Proceedings of the IEEE conference on
    Computer Vision and Pattern Recognition, 2018, pp. 3569–3577.
    [8] W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, and R. Urtasun, “End-to-end interpretable
    neural motion planner,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
    Recognition, 2019, pp. 8660–8669.
    [9] S. Casas, W. Luo, and R. Urtasun, “Intentnet: Learning to predict intention from raw sensor data,” in
    Conference on Robot Learning. PMLR, 2018, pp. 947–956.
    [10] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov, “Multipath: Multiple probabilistic anchor trajectory
    hypotheses for behavior prediction,” arXiv preprint arXiv:1910.05449, 2019.
    [11] A. Cui, S. Casas, A. Sadat, R. Liao, and R. Urtasun, “Lookout: Diverse multi-future prediction and
    planning for self-driving,” in Proceedings of the IEEE/CVF International Conference on Computer
    Vision, 2021, pp. 16 107–16 116.
    [12] A. Kamenev, L. Wang, O. B. Bohan, I. Kulkarni, B. Kartal, A. Molchanov, S. Birchfield, D. Nistér, and
    N. Smolyanskiy, “Predictionnet: Real-time joint probabilistic traffic prediction for planning, control,
    and simulation,” in 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022,
    pp. 8936–8942.
    [13] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,” Advances in neural
    information processing systems, vol. 1, 1988.
    [14] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy, “End-to-end driving via condi-
    tional imitation learning,” in 2018 IEEE international conference on robotics and automation (ICRA).
    IEEE, 2018, pp. 4693–4700.
    [15] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D. Lam, A. Bewley, and A. Shah,
    “Learning to drive in a day,” in 2019 International Conference on Robotics and Automation (ICRA).
    IEEE, 2019, pp. 8248–8254.
    [16] M. Toromanoff, E. Wirbel, and F. Moutarde, “End-to-end model-free reinforcement learning for urban
    driving using implicit affordances,” in Proceedings of the IEEE/CVF conference on computer vision
    and pattern recognition, 2020, pp. 7153–7162.
    [17] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-baselines3: Re-
    liable reinforcement learning implementations,” Journal of Machine Learning Research, 2021.
    [18] D. Chen, V. Koltun, and P. Krähenbühl, “Learning to drive from a world on rails,” in Proceedings of
    the IEEE/CVF International Conference on Computer Vision, 2021, pp. 15 590–15 599.
    [19] D. Chen and P. Krähenbühl, “Learning from all vehicles,” in Proceedings of the IEEE/CVF Conference
    on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 17 222–17 231.
    [20] S. Vora, A. H. Lang, B. Helou, and O. Beijbom, “Pointpainting: Sequential fusion for 3d object
    detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
    2020, pp. 4604–4612.
    [21] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao, “Trajectory-guided control prediction for end-to-end
    autonomous driving: A simple yet strong baseline,” arXiv preprint arXiv:2206.08129, 2022.

    QR CODE