簡易檢索 / 詳目顯示

研究生: 蘇商奇
Shang-chi Su
論文名稱: 單晶矽太陽能電池特性模擬
Single Crystalline Bulk Solar Cell Characteristic Simulation
指導教授: 葉文昌
Wen-chang Yeh
口試委員: 黃鶯聲
none
葉秉慧
none
洪儒生
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 49
中文關鍵詞: 太陽電池表面復合速率固定電荷
外文關鍵詞: solarcell, surface recombination, fix charge
相關次數: 點閱:205下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以Silvaco公司所開發的元件模擬軟體ATLAS模擬單晶矽太陽能池並觀察n+層(射極)及p+層的厚度及摻雜濃度對元件特性的影響,模擬結果顯示,n+層最佳厚度為0.3μm摻雜濃度為5×1018 cm-3,p+層最佳厚度為1µm,p+層最佳濃度為1×1020 cm-3,在上述條件下可得 Voc:0.62V Jsc:22.82 mA/cm2 元件轉換效率:19.74% 。在表面復合速率依存性模擬中,模擬結果顯示當表面復合速率由0增加至1×108 cm/s時,元件轉換效率由19.74%下降至17.05%。n+層與氮化矽接面固定電荷密度依存性模擬中,模擬結果顯示,。在表面復合速率為1×105 cm/s時,當固定電荷密度由0增加至1×1013 cm-2時,則轉換效率由22.31%上升至22.91%。


    We use the semiconductor device simulator ATLAS to optimize the Single crystalline bulk Solar Cell.We investigate the effect of conversion efficiency by thickness and doping concentration of n+ layer and p+ layer.
    Optimization simulation result the thickness of n+ layer is 0.3μm and doping concentration is 5×1018 cm-3.The best thickness of p+layer is 1μm and doping concentration is 1×1020 cm-3.We can get Voc:0.62V Jsc:22.82 mA/cm2 conversion efficiency:19.74% under these parameter.
    The conversion efficiency decrease from 19.74% to 17.05% once Surface recombination velocity from 0 to 1×108 cm/s .Simulation result exhibit the conversion efficiency increase from 24.31% to 24.91% once the Fix charge density between n+ layer and silicon nitride interface increase from 0 to 1×1013 cm-2 under the condition of Surface recombination velocity 1×105 cm/s .

    第一章 緒論 1-1 前言......................................... ﹝1﹞ 1-2 太陽能電池原理............................... ﹝3﹞ 1-3 研究背景..................................... ﹝8﹞ 1-4 研究目標..................................... ﹝8﹞ 1-5 論文流程..................................... ﹝9﹞ 第二章 矽晶太陽能電池模擬最佳化 2-1 前言......................................... ﹝10﹞ 2-2 模擬方法..................................... ﹝11﹞ 2-3 n+層厚度及摻雜濃度對太陽能電池特性之影響..... ﹝11﹞ 2-3.1 n+層摻雜濃度對太陽能電池特性之影響........... ﹝11﹞ 2-3.2 n+層厚度對太陽能電池特性之影響............... ﹝17﹞ 2-4 p+層厚度及摻雜濃度對太陽能電池特性之影響..... ﹝21﹞ 2-4.1 p+層摻雜濃度對太陽能電池特性之影響........... ﹝21﹞ 2-4.2 p+層厚度對太陽能電池特性之影響............... ﹝29﹞ 2-5 表面復合速率對太陽能電池特性之影響........... ﹝32﹞ 2-5.1 前言......................................... ﹝32﹞ 2-5.2 表面復合速率對太陽能電池特性之影響........... ﹝32﹞ 2-6 固定電荷對太陽能電池特性之影響............... ﹝38﹞ 2-6.1 前言......................................... ﹝38﹞ 2-6.2 固定電荷對太陽能電池特性之影響................﹝38﹞ 2-7 本章結論......................................﹝45﹞ 第三章 總結............................................﹝47﹞ 參考文獻...............................................﹝48﹞

    [1] 黃惠良、蕭錫鍊、周明奇、林堅楊、江雨龍、曾百亨、李威儀、李世昌、林唯芳,太陽電池,五南圖書出版股份有限公司,台北 第8-14頁 (2008).
    [2] Patrick Henry Drive, ATLAS user manual, Santa Clara, CA, pp.
    [3] Donald A. Neamen, Semiconductor Physics and Devices, NY, pp. 254-259 (2002)
    [4] Masaya Ichimura, Masashi Hirano, Naoki Kato, Eisuke Arai, Hiroyuki Takamatsu, and Shingo Sumie, “Control of Surface Recombination of Si Wafers by an External Electrode”, Japanese Journal of Applied Physics, Vol. 38, No. 3B, pp. L292-L294 (1999)
    [5] Boguslawa, and Hideki Hasegawa, “Computer Analysis of Surface Recombination Process at Si and Compund Semiconductor Surface and Behavior of Surface Recombination Velocity” , Japanese Journal of Applied Physics, Vol. 37, No. 3B, pp. 1631-1637 (1998)
    [6] Yukie Yamamoto, Yukiharu Uraoka, and Takashi Fuyuki, “Passivation Effect of Plasma Chemical Vapor Deposited SiNx on Single-Crystalline Silicon Thin-Film Solar Cells”, Japanese Journal of Applied Physics, Vol. 42, No. 8, pp. 5135-5139 (2003)
    [7] S. Dauwe, J. Schmidt, A. Metz, and R. Hezel, “Proceedings of the 29th IEEE Photovoltaic Specialists Conference, New Orleans, 2002

    QR CODE