簡易檢索 / 詳目顯示

研究生: 吳勇樂
Elian Davin Mulyadi
論文名稱: Numerical Simulations of Soil Liquefaction and Seismic Behavior of Corroded Underground Structure using PLAXIS 2D
Numerical Simulations of Soil Liquefaction and Seismic Behavior of Corroded Underground Structure using PLAXIS 2D
指導教授: 李安叡
An-Jui Li
口試委員: 王泰典
Tai-Tien Wang
盧之偉
Chih-Wei Lu
陳家漢
Chia-Han Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 198
外文關鍵詞: corroded structure, strong earthquake, PLAXIS 2D analysis
相關次數: 點閱:222下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • In the world of geotechnical engineering, local soil conditions play an important role in the damage caused by earthquakes to structures. It is well known that different soil types can generate different seismic waves during earthquakes, and the way they affect nearby structures depends on their properties. One of the most complex phenomena that can occur during earthquakes and cause severe damage to structures is liquefaction. Meanwhile, it is also undeniable that the world of civil engineering itself, including underground structures, is closely related to corrosion problems. Considering these problems, numerical analysis must be carried out. Therefore, in this study, PLAXIS 2D software is used not only to obtain the results of liquefaction potential, but also to simulate the seismic behavior and structural performance of the deterioration of reinforced concrete structures due to various grades and ranges of corrosion damage. The results show that in strong earthquakes such as the 1999 Chi-Chi earthquake in Taiwan and the 1995 Kobe earthquake in Japan, corroded underground structures have some impacts to the results.

    ABSTRACT .................................................................................................................... i TABLE OF CONTENTS ............................................................................................... ii LIST OF FIGURES ....................................................................................................... v LIST OF TABLES ........................................................................................................ xi CHAPTER 1. INTRODUCTION ............................................................................ 1 1.1. Research Background .................................................................................. 1 1.2. Research Objectives .................................................................................... 2 1.3. Thesis Structure ........................................................................................... 3 CHAPTER 2. LITERATURE REVIEW ................................................................. 5 2.1. Deep Excavation Engineering Study Background ...................................... 5 2.1.1. Retaining Wall Deformation due to Deep Excavation ......................... 5 2.1.2. Ground Surface Settlement due to Deep Excavation ........................... 6 2.1.2.1. Types of Ground Surface Settlement ................................................ 6 2.1.2.2. Magnitude of Maximum Ground Surface Settlement ....................... 8 2.1.2.3. Influence Zones of Ground Surface Settlement ................................ 8 2.2. Steel Reinforcement Corrosion Study Background ..................................... 9 2.2.1. Types of Steel Reinforcement Corrosion ............................................. 9 2.2.2. Mechanical Properties of Corroded Steel Reinforcement .................. 12 2.2.2.1. Weight Reduction Rate of Corroded Steel Reinforcement ............. 12 2.2.2.2. Local Magnification Rate of Corroded Steel Reinforcement ......... 13 2.3. Effect of Spalling of the Concrete Protective Layer Study Background ... 14 CHAPTER 3. NUMERICAL ANALYSIS MODEL ............................................ 15 3.1. Two-Dimensional Numerical Analysis Software using PLAXIS 2D ....... 15 3.1.1. Hardening Soil (HS) Model ............................................................... 15 3.1.1.1. m Parameter .................................................................................... 16 3.1.1.2. E50ref Parameter ............................................................................... 16 3.1.1.3. Eoedref Parameter .............................................................................. 17 3.1.1.4. Eurref Parameter ................................................................................ 17 3.1.2. Hardening Soil with Small-Strain Stiffness (HSS) Model ................. 17 3.1.2.1. Hysteresis Damping in a Small-Strain Stiffness Model .................. 20 3.1.3. UBC3D-PLM Model .......................................................................... 23 3.1.3.1. Stiffness Parameters kB*e, kG*e, kG*p, me, ne, and np ...................... 24 3.1.3.2. Strength Parameters φcv, φp, and c .................................................. 24 3.1.3.3. Advanced Parameters Rf, fdens, and fEpost ......................................... 25 3.1.3.4. Corrected SPT Value (N1)60 ............................................................ 25 3.1.3.5. ru in Terms of ru,σ'v ........................................................................... 26 3.1.3.6. ru in Terms of ru,p' ............................................................................ 26 3.2. XTRACT Software .................................................................................... 27 3.2.1. XTRACT for Bending Moment Analysis .......................................... 27 3.3. Numerical Model Parameters Establishment ............................................ 27 3.3.1. Soil Profile ......................................................................................... 27 3.3.2. Structural Components Parameters .................................................... 33 3.3.2.1. Case Study of Taipei National Enterprise Center (TNEC) ............. 33 3.3.2.2. Continuous Wall Parameters ........................................................... 35 3.3.2.3. Temporary Steel Struts and Slabs Parameters ................................ 40 3.3.2.4. Steel Columns Parameters .............................................................. 40 3.3.2.5. Model Boundary ............................................................................. 41 3.4. Dynamic Analysis Setup ........................................................................... 42 3.4.1. Introduction to Seismic Intensity ....................................................... 42 3.4.2. Seismic Cases ..................................................................................... 44 3.4.2.1. Kobe Earthquake ............................................................................. 44 3.4.2.2. Chi-Chi Earthquake ......................................................................... 44 CHAPTER 4. RESULT AND DISCUSSION ....................................................... 46 4.1. Analysis Plan ............................................................................................. 46 4.1.1. Different Grades of Corroded Reinforcements .................................. 47 4.1.2. Different Areas of Corroded Reinforcements .................................... 47 4.2. Static Analysis Results .............................................................................. 48 4.3. Dynamic Analysis Results ......................................................................... 53 4.3.1. Kobe Earthquake ................................................................................ 67 4.3.1.1. Wall Deformation (ux) .................................................................... 67 4.3.1.2. Ground Settlement (uy) ................................................................... 67 4.3.1.3. Wall Bending Moment .................................................................... 67 4.3.1.4. Internal Force Diagram and Damage State of the Wall .................. 68 4.3.1.5. Slabs Deformation (uy) .................................................................... 68 4.3.1.6. Slabs Bending Moment ................................................................... 68 4.3.1.7. Slabs Axial Force ............................................................................ 68 4.3.1.8. Excess Pore Pressure and Excess Pore Pressure Ratio (ru) ............. 69 4.3.2. Chi-Chi Earthquake .......................................................................... 109 4.3.2.1. Wall Deformation (ux) .................................................................. 109 4.3.2.2. Ground Settlement (uy) ................................................................. 109 4.3.2.3. Wall Bending Moment .................................................................. 109 4.3.2.4. Internal Force Diagram and Damage State of the Wall ................ 109 4.3.2.5. Slabs Deformation (uy) .................................................................. 110 4.3.2.6. Slabs Bending Moment ................................................................. 110 4.3.2.7. Slabs Axial Force .......................................................................... 110 4.3.2.8. Excess Pore Pressure and Excess Pore Pressure Ratio (ru) ........... 110 CHAPTER 5. CONCLUSION AND FUTURE WORK ..................................... 181 5.1. Conclusion ............................................................................................... 181 5.2. Future Work ............................................................................................. 182 REFERENCES .......................................................................................................... 183

    ACI Committee 318. (2014). Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14). American Concrete Institute, Farmington Hills.
    AIJ. (1999). Design guidelines for earthquake resistant reinforced concrete buildings based on inelastic displacement concept. Architectural Institute of Japan, Tokyo, Japan. (in Japanese)
    Atkinson, J.H. & Sallfors, G. (1991). Experimental determination of stress–strain–time characteristics in laboratory and in situ tests.
    Azzam, Waseim. (2014). Seismic Response of Bucket Foundation and Structure Under Earthquake Loading. Electronic Journal of Geotechnical Engineering. 19.
    Borowiec, Anna & Michał, Stanuszek. (2016). Liquefaction mechanism induced by dynamic excitation modeled in Plaxis AE with the use of UBC and MOHR–coulomb constitutive relationships. Studia Geotechnica et Mechanica. 38. 10.1515/sgem-2016-0013.
    Brinkgreve, R. & Kappert, M & Bonnier, P. (2007). Hysteretic damping in a small-strain stiffness model. 10.1201/NOE0415440271.ch106.
    Castaldo, Paolo & De Iuliis, Massimiliano. (2014). Effects of deep excavation on seismic vulnerability of existing reinforced concrete framed structures. Soil Dynamics and Earthquake Engineering. 64. 102–112. 10.1016/j.soildyn.2014.05.005.
    Clough, Wayne & O’Rourke, Thomas. (1990). Construction induced movements of in situ wall. Geotechnical Special Publication. 439-470.
    D. V. Val & M. G. Stewart. (2003). Life-cycle cost analysis of reinforced concrete structures in marine environments. Structural Safety. 25. 343-362. 10.1016/S0167-4730(03)00014-6
    Daftari, A. & Kudla, W. (2014). Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS. World Academy of Science, Engineering and Technology, Open Science Index 86, International Journal of Civil and Environmental Engineering. 8(2). 106-111.
    Daftari, A. (2015). New Approach in Prediction of Soil Liquefaction. Geo-Engineering and Mining of the Technische Universität Bergakademie Freiberg Ph.D Thesis.
    Diaz-Segura, Edgar. (2015). Assessment of liquefaction triggering: The UBC3D-PLM constitutive model versus semi-empirical methods based on SPT-N values. Electronic Journal of Geotechnical Engineering. 20. 10061-10071.
    Do, Tuan-Nghia & Ou, Chang-Yu & Chen, Ren-Peng. (2016). A study of failure mechanisms of deep excavations in soft clay using the finite element method. Computers and Geotechnics. 73. 10.1016/j.compgeo.2015.12.009.
    Galavi, Vahid & Petalas, Alexandros & Brinkgreve, R.. (2013). Finite element modelling of seismic liquefaction in soils. Geotechnical Engineering. 44. 55-64.
    Gouw Dr, Tjie-Liong. (2014). Common Mistakes on the Application of Plaxis 2D in Analyzing Excavation Problems. 9. 8291-8311.
    Harahap, S.E. & Ou. C.-Y. (2020). Finite element analysis of time-dependent behavior in deep excavations. Canadian Geotechnical Journal. 31. 204-214.
    Hsieh, Pio-Go & Ou, Chang-Yu. (1998). Shape of ground surface settlement profiles caused by excavation. Canadian Geotechnical Journal. 35. 1004-1017. 10.1139/t98-056.
    Kramer, Steve & Upsall, Sarah. (2006). Instrumental Intensity Scales for Geohazards.
    Kim, Hyung-Rae & Tae, Sungho & Lee, Hanseung & Lee, Sungbok & Noguchi, Takafumi. (2009). Evaluation of Mechanical Performance of Corroded Reinforcement Considering the Surface Shape. ISIJ International. 49. 1392-1400. 10.2355/isijinternational.49.1392.
    Kiran, D. & Khan, Muzzaffar & Mittamidi, Madhusudhan Reddy & Reddy, K. & Kumar, G.. (2020). Numerical Analysis of Liquefaction and Settlement in Layered Soils. 10.1007/978-981-15-3662-5_7.
    Laera, A. & Brinkgreve, R.B.J. (2015). Ground response analysis in PLAXIS 2D. Plaxis BV.
    Laera, A. & Brinkgreve, R.B.J. (2016). Site response analysis and liquefaction evaluation.
    Liao, S. & Whitman, R.V. (1986). Overburden Correction Factors for SPT in Sand. Journal of Geotechnical Engineering. 112. 373-377.
    Lim, A. & Ou, C.Y. (2017). Stress paths in deep excavation under undrained conditions and its influence on deformation analysis. Tunnel Underground Space Technology. 63. 118-132.
    Makra, A. (2013). EVALUATION OF THE UBC3D-PLM CONSTITUTIVE MODEL FOR PREDICTION OF EARTHQUAKE INDUCED LIQUEFACTION ON EMBANKMENT DAMS.
    Mercado, Jaime A.. (2016). SIMULATION OF LIQUEFACTION-INDUCED DAMAGE OF THE PORT OF LONG BEACH CALIFORNIA USING THE UBC3D-PLM MODEL.
    Mohamed, Amr & Fattah, Mohamed & Bakr, Ahmed. (2020). NUMERICAL ANALYSIS OF LIQUEFACTION PHENOMENON BY USING UBC3D-PLM CONSTITUTIVE MODEL. Journal of Advanced Engineering Trends. 38. 81-96. 10.21608/jaet.2020.73029.
    Obrzud, R.F. (2011). On the use of the Hardening Soil Small Strain model in geotechnical practice.
    Ou, C.-Y., Hsieh, P.G., and Chiou, D.C. (1993). Characteristics of ground surface settlement during excavation. Canadian Geotechnical Journal. 30. 758-767.
    Ou, C.-Y. (2006). Deep Excavation: Theory and Practice (1st ed.). CRC Press. https://doi.org/10.1201/9781482288469.
    Ou, Chang-Yu & Hsieh, Pio-Go. (2011). A simplified method for predicting ground settlement profiles induced by excavation in soft clay. Computers and Geotechnics - COMPUT GEOTECH. 38. 987-997. 10.1016/j.compgeo.2011.06.008.
    Park, Eon-Sang & Kim, Byung-Il. (2022). A Study on the Application of UBC3D-PLM for Soil Liquefaction Analysis. Journal of the Korean Geosynthetics Society. 21. 1-10.
    Park, Sung-Sik & Kim, Young-Su & Byrne, P.M. & Kim, Dae-Man. (2005). A Simple Constitutive Model for Soil Liquefaction Analysis. Journal of the Korean Geotechnical Society. 21. 27-35.
    Petalas, A.L., & Galavi, V. (2013). PLAXIS LIQUEFACTION MODEL UBC3D-PLM.
    PLAXIS. (2021). PLAXIS 2D CONNECT Edition V21.01-Material Models Manual.
    PLAXIS. (2021). PLAXIS 2D CONNECT Edition V21.01-Reference Manual.
    Sukkarak, R. & Tanapalungkorn, W. & Likitlersuang, S. & Ueda, K. (2021). Liquefaction analysis of sandy soil during strong earthquake in Northern Thailand. Soils and Foundations 61. 1302-1318.
    Tsai, Yi-Ching. (2018). Durability and Seismic Performance Evaluation System Development for RC Buildings.
    Tsegaye, Anteneh. (2010). Plaxis Liquefaction Model.
    Yang, Zhi-Quan. (2020). Use to finite element method to discuss the seismic behavior of underground structure corrosion. Department of Civil and Construction Engineering of National Taiwan University of Science and Technology Master Thesis.
    Zheng, Yuan-Liang & Chiu, Chien-Kuo & Chen, Jian-Zhong & Chen, Chun-Tao & Zhou, Kai-Jun. (2015). Assessment Method for Durability of Reinforced Concrete Buildings. Architectural Journal. 91. 39-61. 10.3966/101632122015030091003.

    無法下載圖示 全文公開日期 2028/01/16 (校內網路)
    全文公開日期 2028/01/16 (校外網路)
    全文公開日期 2028/01/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE