簡易檢索 / 詳目顯示

研究生: 林益煒
Yi-wei Lin
論文名稱: AZ31鎂合金板材之熱間擠製加工製程及其機械性質之研究
Study on Hot Extrusion Process and Mechanical Property of AZ31 Magnesium Alloy Sheet
指導教授: 向四海
Su - Hai Hsiang
口試委員: 徐瑞坤
none
黃佑民
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 97
中文關鍵詞: 擠製鎂合金板材變速法
外文關鍵詞: Magnesium Alloy Sheet, Multi Speed Method,MSM, Extrusion
相關次數: 點閱:243下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是研究AZ31鎂合金在三組不同之錐度模(模具半角為20°、30°與40°)下,進行板材熱間擠製加工之成形性及探討製程參數對板材之機械性質的影響。本文中所探討之製程參數包含材料加熱溫度、盛錠筒溫度、擠製初速度與潤滑劑等四項。首先,運用田口式直交表規劃製程參數之組合,以進行擠製比為35.9的板材在錐度模之熱間擠製加工,全部之實驗次數共計二十七次實驗。
    此外,AZ31鎂合金板材於錐度模之擠製加工成形性也會在所謂變速之方法(Multi Speed Method,MSM)中被探討。鎂合金為六方緊密堆積的組織結構,由於其滑移系統之滑移面相當有限,若採用固定速度進行擠製加工,其實驗所得之板材皆有缺陷產生,無法獲得良好之板材;然而採用變速之方法進行擠製加工時,即可得到表面良好之健全板材,變速法中調變擠製初速度的時機點之變化,亦會直接影響板材擠製加工的成功與否。
    對於擠製成形板材之抗拉強度,以田口法之品質計量法及製程參數之最佳化分析,可以獲得AZ31鎂合金板材在三組錐度模之熱間擠製加工時之最佳製程參數組合。並探討分析材料加熱溫度、擠製初速度與潤滑劑等三項製程參數,對於板材擠製加工成形性及其機械性質之影響。最後觀察成品之金相顯微組織,探討板材在擠製加工中之顯微組織的變化,希望掌握板材擠製加工的各項製程參數與其機械性質的相關性,以期提供鎂合金加工產業界之參考。


    In this research, three converging dies (semi angles of die are 20°, 30°, and 40°) are used to investigate the influence of process parameters to the mechanical properties in the hot extrusion of AZ31 magnesium alloy sheets. The process parameters considered in this study are the heating temperature of billet, the temperature of container, the initial speed of extrusion and the lubricant. Orthogonal arrays (L27) is used to arrange the experimental procedures of magnesium alloy sheet extrusion under extrusion ratio 35.9.
    In addition, the formability of AZ31 magnesium alloy sheet under converging dies will be investigated by using Multi Speed Method (MSM). Since the microstructure of magnesium alloy is Hexagonal Closed-Packed (HCP), there is only a sliding face in the bottom of the structure. Therefore, if we use fixed speed method to extrude the sheet, it is difficult to deform under room temperature, in contrast, when using Multi Speed Method sound sheet can be yielded. Incidentally, the timing of adjusting initial speed of extrusion also affects the formability in hot extrusion process.
    For the purpose of investigating the tensile strength of extruded sheet, the quality measurement and optimal condition analysis of Taguchi Method are used to obtain the optimal conditions of hot extrusion process in AZ31 magnesium alloy sheet. Moreover, the material temperature, the initial speed of extrusion and the lubricant are changed to observe the effect on formability of extrusion process and mechanical property of extruded sheet. Finally, using the Optical Microscope (OM) to observe the variance of microstructure of extruded parts to clarify the relationship between process parameters and mechanical properties of the products.

    目 錄 頁次 中文摘要 I 英文摘要 II 誌 謝 III 目 錄 IV 符號索引 VII 圖 目 錄 VIII 表 目 錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 研究方法與步驟 5 1.4 鎂板之發展史與應用 6 1.5 鎂板的製造方法 8 1.5.1 傳統軋延法 8 1.5.2 圓棒材擠製法 8 第二章 理論基礎與文獻回顧 9 2.1 鎂合金簡介 9 2.1.1 添加合金元素對鎂合金之影響 10 2.1.2 鎂合金命名規範 13 2.1.3 擠製用材之鎂合金種類 14 2.1.4 鎂合金之安全作業 15 2.2 擠製成形加工簡介 16 2.2.1 直接擠製加工法 16 2.2.2 間接擠製加工法 16 2.2.3 衝擊擠製加工法 18 2.2.4 液靜壓擠製加工法 18 2.2.5 連續擠製加工法 19 2.3 田口式實驗計劃法 20 2.3.1 田口方法之簡介 20 2.3.2 實驗計劃法介紹 21 2.3.3 田口式直交表實驗法 22 2.3.4 品質計量法 23 2.3.5 最佳化之製程參數分析 25 2.4 文獻回顧 28 第三章 實驗方法與步驟 31 3.1 實驗材料 33 3.2 熱間擠製加工之實驗設備 34 3.2.1 臥式熱間擠製機 34 3.2.2 控制器與工業用電腦 35 3.2.3 模具 35 3.2.4 加熱爐 39 3.3 製程參數之選取 40 3.4 田口式直交表實驗規劃 44 3.4.1 田口式L9直交表規劃 44 3.4.2 品質計量法 46 3.5 拉伸試驗 47 3.6 金相微觀組織觀察 49 第四章 結果與討論 50 4.1 板材擠製加工之變速法 54 4.1.1 模具半角30°錐度模之調變時機 54 4.1.2 模具半角20°錐度模之調變時機 56 4.1.3 模具半角40°錐度模之調變時機 56 4.2 擠製負荷分析 59 4.3 板材強度之最佳製程參數 62 4.3.1 模具半角20°之擠製出板材抗拉強度分析 62 4.3.2 模具半角30°擠製出之板材抗拉強度分析 64 4.3.3 模具半角40°擠製出之板材抗拉強度分析 66 4.4 製程參數對板材機械性質之影響 68 4.4.1 擠製初速對板材機械性質之影響 69 4.4.2 潤滑劑對板材機械性質之影響 70 4.4.3 材料加熱溫度對板材機械性質之影響 71 4.5 製程參數對板材金相顯微組織之觀察 73 4.5.1 擠製初速對板材顯微組織之影響 74 4.5.2 潤滑劑對板材顯微組織之影響 76 4.5.3 材料加熱溫度對板材顯微組織之影響 79 第五章 結論 81 參考文獻 83 作者簡介 86 圖目錄 頁次 圖1-1 鎂合金產品之應用領域 1 圖1-2 鎂合金產業結構 2 圖1-3 研究之流程 5 圖1-4 全鎂合金飛機 6 圖1-5 鎂板擠製加工示意圖 8 圖2-2 間接擠製加工法 17 圖2-3 衝擊擠製加工法 18 圖2-4 液靜壓擠製加工法 19 圖2-5 連續擠製加工法 19 圖2-6 各因子對S/N比之因子效果圖 27 圖3-1 研究之流程與步驟 32 圖3-2 AZ31鎂合金之擠錠 33 圖3-3 臥式熱間擠製機 34 圖3-4 模具半角20˚之擠製模具圖 36 圖3-5 模具半角30˚之擠製模具圖 37 圖3-6 模具半角40˚之擠製模具圖 38 圖3-7 加熱爐 39 圖3-8 不同擠製初速變速法之擠製負荷曲線 41 圖3-9 板材表面之氧化缺陷 42 圖3-10 直交表實驗規劃流程 45 圖3-11 萬能試驗機 47 圖3-12 擠錠之拉伸試片 48 圖3-13 板材之拉伸試片 48 圖4-1 擠製加工之負荷曲線 51 圖4-2 有缺陷破裂之擠製板材 52 圖4-3健全之擠製板材 52 圖4-4 擠製板材表面之氧化魚鱗片 53 圖4-5 擠製板材表面之氧化現象 53 圖4-6 模具半角30°之調變時機曲線 55 圖4-7 模具半角20°之調變時機曲線 57 圖4-8 模具半角40°之調變時機曲線 58 圖4-9 模具半角40°之擠製負荷曲線 60 圖4-10 三組錐度模擠製初速3MM/S之擠製負荷曲線 61 圖4-11 模具半角20°擠製出之板材抗拉強度因子效果圖 63 圖4-12 模具半角30°擠製出之板材抗拉強度因子效果圖 65 圖4-13 模具半角40°擠製出之板材抗拉強度因子效果圖 67 圖4-14 不同擠製初速對板材抗拉強度之影響 70 圖4-15 不同潤滑劑對板材抗拉強度之影響 71 圖4-16 不同材料加熱溫度對板材抗拉強度之影響 72 圖4-17 AZ31鎂合金擠錠胚料之顯微組織 74 圖4-18 擠製初度2mm/s之板材顯微組織 75 圖4-19 擠製初度4mm/s之板材顯微組織 75 圖4-20 擠製初度6mm/s之板材顯微組織 76 圖4-21 潤滑劑氮化硼之板材顯微組織 77 圖4-22 潤滑劑石墨之板材顯微組織 78 圖4-23 潤滑劑二硫化鉬之板材顯微組織 78 圖4-24 材料加熱溫度300℃之板材顯微組織 79 圖4-25 材料加熱溫度320℃之板材顯微組織 80 圖4-26 材料加熱溫度340℃之板材顯微組織 80 表目錄 頁次 表2-1 輕金屬與鐵金屬之物理性質 9 表2-2 鎂合金之特性 10 表2-3 鎂合金之命名規範 13 表2-4 鎂合金符號以AZ31B-T4為例 14 表2-5 鎂合金元素成份重量百分比 14 表2-6 鎂合金燃燒之滅火劑 15 表2-7 田口方法與傳統實驗計劃法之比較 21 表2-8 田口式L9(34)直交表 23 表2-9 抗拉強度之S/N比 25 表2-10 各因子對S/N比回應表 26 表2-11 最佳化之製程參數組合 27 表3-1 元素成份重量百分比 33 表3-2 擠製模具之尺寸 35 表3-3 因子水準設定 46 表3-4 田口式L9直交表 46 表4-1 模具半角30°之調變時機點 55 表4-2 模具半角20°之調變時機點 57 表4-3 模具半角40°之調變時機點 58 表4-4 模具半角40°之擠製負荷 60 表4-5 模具半角20°之擠製負荷 61 表4-6 模具半角30°之擠製負荷 61 表4-7 模具半角20°擠製出之板材抗拉強度與S/N比 63 表4-8 模具半角20°擠製出之板材抗拉強度S/N回應表 63 表4-9 板材抗拉強度最佳製程參數組合(模具半角20°) 64 表4-10 模具半角30°擠製出之板材抗拉強度與S/N比 64 表4-11 模具半角30°擠製出之板材抗拉強度S/N比回應表 65 表4-12 板材抗拉強度最佳製程參數組合(模具半角30°) 65 表4-13 模具半角40°擠製出之板材抗拉強度與S/N比 66 表4-14 模具半角40°擠製出之板材抗拉強度S/N比回應表 67 表4-15 板材抗拉強度最佳之製程參數組合(模具半角40°) 67 表4-16 探討製程參數對板材機械性質影響之參數設定 68 表4-17 不同擠製初速對板材抗拉強度之影響 69 表4-18 不同潤滑劑對板材抗拉強度之影響 71 表4-19 不同材料加熱溫度對板材抗拉強度之影響 72 表4-20 不同潤滑劑對板材之擠製負荷之影響 77

    [01] 葉哲政,“從微笑理論看我國鎂合金產業未來發展方向”,ITIS產業資訊服務網,線上資料,金屬中心,民國九十三年。
    [02] 黃文榮,“台灣鎂合金產業經營策略分析”,國立中山大學碩士論文,民國九十一年。
    [03] 黃國維、蔡幸甫,“鎂合金產業技術及市場發展趨勢專題調查”,工業技術研究院產業經濟與資訊服務中心,民國九十年。
    [04] Su-Hai Hsiang and Jer-Liang Kuo,“Application of ANN to the hot extrusion of magnesium alloy sheets”, International Journal of Advanced Manufacturing Technology, Vol.25, pp.292-300(2005).
    [05] http://fandavion.free.fr/arado196-histoire.htm
    [06] 邱垂泓,“鎂板的應用及其製造方法”,工業材料雜誌,第190期,164-168頁,民國九十一年。
    [07] 馬寧元,“鎂合金表面處理簡介”,鍛造月刊,第九卷第一期, 37-49頁,民國八十九年。
    [08] 王凱弘,“應用AZ31鎂合金成形性資料於沖鍛3C殼件之開發”,金屬工業研究發展中心金屬成形組,民國九十一年。
    [09] 魏汝超,“鎂合金之熱機處理與退火處理的顯微組織研究”,台灣大學碩士論文,民國九十二年。
    [10] 劉文勝,“AZ61鎂合金的疲勞性質與破壞分析”,中央大學碩士論文,民國八十九年。
    [11] 林景扶,“鎂合金安全作業”,工業材料雜誌,第152期, 110-122頁,民國八十八年。

    [12] 黃德福,“複合材擠製之研究”,國立中山大學博士論文,民國九十一年。
    [13] 李輝煌,“田口方法:品質設計的原理與實務”,高立圖書有限公司,民國八十九年。
    [14] 吳玉印,“新版實驗計劃法”,中興管理顧問公司,民國七十七年。
    [15] 田口玄一,陳耀茂譯,“田口實驗計劃法”,滄海書局,民國八十六年。
    [16] William Y. Fowlkes and Clyde M. Creveling, “Engineering Methods for Robust Product Design”, Addison Wesley(1998).
    [17] 郭哲良,“鎂合金薄板之熱間擠製加工之探討”,國立台灣科技大學碩士論文,民國九十年。
    [18] Su-Hai Hsiang and Jer-Liang Kuo,“An investigation on the hot extrusion process of magnesium alloy sheet”, Journal of Material Processing Technology, Vol.140, pp.6-12 (2003).
    [19] 周村憲,“鎂合金板材於錐度模中之熱間擠製”,國立台灣科技大學碩士論文,民國九十二年。
    [20] 黃柏清,“鎂合金管材之熱間擠製加工之探討”,國立台灣科技大學碩士論文,民國九十一年。
    [21] 楊馥源,“同熱間擠製比下之鎂合金矩形管之成形性探討”,,國立台灣科技大學碩士論文,民國九十三年。
    [22] M. Bakhshi-Jooybari, “A theoretical and experimental study of friction in metal forming by the use of the forward extrusion process”, Journal of Material Processing Technology, Vol.125-126, pp.369-374 (2002).

    [23] Hossein Rahimi Darani and Mostafa Ketabchi, “Simulation of “L” section extrusion using upper bound method”, Materials and Design, Vol.25, pp.535-540 (2004).
    [24] Tsutomu Murai, Shin-ichi Matsuoka, Susumu Miyamoto and Yoshinari Oki, “Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions”, Journal of Material Processing Technology, Vol.141, pp.207-212 (2003).
    [25] Margam Chandrasekaran and Yong Ming Shyan Johm, “Effect of materials and temperature on the forward extrusion of magnesium alloys”, Materials Science and Engineering A, Vol.381, pp.308-319 (2004).
    [26] A. Mwembela, E.B. Konopleva and H.J. McQueen, “Microstructural development in Mg alloy AZ31during working”, Scripta Materialia, Vol.37, No 11, pp.1789-1795 (1998).
    [27] H. Takuda, T. Yoshi and N. Hatta, “Finite-element analysis of the formability of a magnesium-based alloy AZ31 sheet”, Journal of Material Processing Technology, Vol.89-90, pp.135-140 (1999).
    [28] Fuh-Kuo Chen and Tyng-Bin Huang, “Formability of stamping magnesium-alloy AZ31 sheets”, Journal of Material Processing Technology, Vol.142, pp.643-647 (2003).
    [29] Fuh-Kuo Chen, Tyng-Bin Huang and Chih-Kun Chang, “Deep drawing of square cups with magnesium alloy AZ31 sheets”, International Journal of Machine Tools & Manufacture, Vol.43, pp.1553-1559 (2003).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE