簡易檢索 / 詳目顯示

研究生: 林琬陵
Wan-ling Lin
論文名稱: 含生物緩衝劑TRIS或EPPS之環醚類水溶液的汽液平衡研究
Vapor-Liquid Equilibrium of Aqueous Cyclic Ether Mixtures in the Presence of Biological Buffer TRIS or EPPS
指導教授: 李明哲
Ming-jer Lee
口試委員: 李豪業
Hao-yeh Lee
陳瑞堂
Jui-tang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 155
中文關鍵詞: 恆壓生物緩衝劑TRISEPPS環醚類水溶液汽液平衡研究
外文關鍵詞: cyclic ether mixtures, biological buffer TRIS or EPPS
相關次數: 點閱:188下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用再循環裝置量測六組三成分系統在一大氣壓下1,4-dioxane (1) + water (2) + TRIS (3),1,4-dioxane (1) + water (2) + EPPS (3),1,3-dioxolane (1) + water (2) + TRIS (3),1,3-dioxolane (1) + water (2) + EPPS (3),THF (1) + water (2) + TRIS (3)和THF (1) + water (2) + EPPS (3)之恆壓汽液平衡數據。所添加生物緩衝液的濃度範圍是從質量分率0.05至0.15。加入生物緩衝劑TRIS後,在1,4-dioxane水溶液、1,3-dioxolane水溶液以及tetrahydrofuran水溶液中,環醚類之汽相組成及水溶液共沸點組成皆明顯往有機成分增高的方向移動,且移動的效果依TRIS濃度增加而更明顯。加入生物緩衝劑EPPS後,1,4-dioxane水溶液以及tetrahydrofuran水溶液之汽相組成往有機成分端移動,且移動的效果依EPPS濃度增加而更明顯。加入生物緩衝劑EPPS於1,3-dioxolane水溶液時,1,3-dioxolane之液相組成、汽相組成及平衡溫度只有輕微改變。實驗所得之相平衡數據以NRTL模型來關聯以求取雙成分交互作用參數最適值。針對本研究的系統,NRTL模型關聯之結果與汽液相平衡實驗數據相符合。然而,使用NRTL模式關聯三成分系統液液相平衡之交互作用參數無法和汽液相平衡數據相符,如要準確計算汽液相平衡性質,必須使用由汽液相平衡數據所訂定的交互參數值,將這些NRTL模式之參數值應用於製程模擬,方能可靠評估由蒸餾塔回收生物緩衝劑的操作效能。


    Isobaric vapor-liquid equilibrium (VLE) data were measured for six ternary systems of 1,4-dioxane (1) + water (2) + TRIS (3), 1,4-dioxane (1) + water (2) + EPPS (3), 1,3-dioxolane (1) + water (2) + TRIS (3), 1,3-dioxolane (1) + water (2) + EPPS (3), THF (1) + water (2) + TRIS (3) and THF (1) + water (2) + EPPS (3) at 101.32 kPa by using a modified recirculating type of Othmer equilibrium still. The concentration range of the added biological buffer is from 0.05 to 0.15 in mass fraction. The presence of TRIS induces significantly azetropic composition shifting for the aqueous 1,4-dioxane, 1,3-dioxolane and tetrahydrofuran systems. In the presence of EPPS in aqueous 1,4-dioxane and tetrahydrofuran systems, the azeotropic composition shifting effect was also found substantially, while only minor effect on the VLE behavior was found from the aqueous 1,3-dioxolane system. The experimental VLE data were correlated with the NRTL model to determine the binary interaction parameters. Generally, the NRTL model correlate reasonably well for the systems investigated in this study. These new VLE ternary data of EPPS-containing systems were also taken as a basis for evaluating the applicability of the binary parameters determined from the liquid-liquid equilibrium (LLE) data for predicting the VLE properties. Large discrepancy was found from this evaluation, and indicating that the simulation of buffer-recovery distillation column should use the parameters determined from the VLE data.

    目錄 摘要 I ABSTRACT III 致謝 V 目錄 VIII 圖目錄 X 表目錄 XVIII 第一章 1 1-1 研究背景 1 1-2 前人研究 4 1-3 問題陳述 6 1-4 研究目標 8 1-5 研究大綱 9 第二章 12 2-1 環醚類 12 2-1-1 1,4-dioxane 13 2-1-2 1,3-dioxolane 14 2-1-3 Tetrahydrofuran 15 2-2 共沸物 16 2-3 萃取蒸餾 22 2-4 鹽析法 25 2-5 生物緩衝劑 27 2-5-1 Tris(hydroxymethyl)aminomethane (TRIS) 28 2-5-2 3-[4-(2-Hydroxyethyl)-1-piperazine]propanesulfonic acid (EPPS) 29 2-6 在Aspen Plus V7.2 中定義新物質 30 2-7 汽液相平衡原理 31 2-8 NRTL模式 34 2-9 熱力學一致性測試 36 第三章 42 3-1 藥品 42 3-2 實驗裝置 43 3-3 實驗步驟 44 3-4 樣品之組成分析 46 第四章 58 4-1 實驗再現性測試與一致性測試 58 4-2 探討三成分系統之實驗結果 59 4-3 使用NRTL模式迴歸液液相平衡雙成分交互參數與汽液相平衡雙成份交互參數之比較 67 第五章 135 參考文獻 137 符號說明 154

    Altway, S. (2012), Liquid-liquid Equilibrium of Aqueous Solutions in the  Presence of Biological Buffer MOPS or MOPS Sodium Salt. Master Thesis, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    Altway, S., Taha, M., and Lee, M.J. (2012), Separation of 2-Propanol from Its Aqueous Solution with the Aid of a Biological Buffer MOPS, 2012程序系統工程研討, May 25-26,溪頭。
    Atkins, P.W. (1994), Physical Chemistry, 5th ed. p.250, Oxford University Press, Oxford, England.
    Britt, H.I. and Luecke, R.H. (1973), The Estimation of Parameters in Nonlinear, Implicit Models, Technometrics, 15 (2), 233-247.
    Brunjes, A.S. and Bogart, M.J.P. (1943), Vapor-Liquid Equilibria for Commercially Important Systems of Organic Solvents: the Binary Systems Ethanol - n-Butanol, Acetone - Water, and Isopropanol – Water, Ind. Eng. Chem., 35, 255-260.
    Calvar, N., Gonzalez, B., Gomez, E., and Dominguez, A. (2008), Vapor–Liquid Equilibria for the Ternary System Ethanol + Water + 1-Ethyl-3-Methylimidazolium Ethylsulfate and the Corresponding Binary Systems Containing the Ionic Liquid at 101.3 kPa, J. Chem. Eng. Data, 53 (3), 820-825.
    Calvar, N., Gonzalez, B., Gomez, E., and Dominguez, A. (2009), Vapor−Liquid Equilibria for the Ternary System Ethanol + Water + 1-Butyl-3-Methylimidazolium Methylsulfate and the Corresponding Binary Systems at 101.3 kPa, J. Chem. Eng. Data, 54, 1004-1008.
    Cao, D. and Bergens, S.H. (2003), A Direct 2-Propanol Polymer Electrolyte Fuel Cell, J. Power Sources, 124 (1), 12-17.
    CEC (1982), Propan-2-ol: Chemico-Physical Data, Toxicity Data, Environmental Occurrence, and Permissible Levels, In: Report of the Scientific Committee for Food on Extraction Solvents, Commission of the European Communities, Directorate General for Internal Market and Industrial Affairs, Brussels, Belgium, 46-72.
    Dawe, R.A., Newsham, D.M.T., and Ng, S.B. (1973), Vapor-Liquid Equilibriums in Mixtures of Water, 1-Propanol, and 1-Butanol, J. Chem. Eng. Data, 18 (1), 44-49.
    El-Dossoki, F. I., "The Influence of Cation, Anion and Temperature on the Liquid–Liquid Equilibrium of Some Pentanols–Water System," Fluid Phase Equilib., 305, 161-168 (2011).
    Ferguson, W.J., Braunschweiger, K.I., Braunschweiger, W.R., Smith, J.R., McCormick, J.J., Wasmann, C.C., Jarvis, N.P., Bell, D.H., and Good, N.E., "Hydrogen Ion Buffers for Biological Research," Anal. Biochem., 104, 300-310 (1980).
    Font, A., Asensi J.C., Ruiz F., and Gomis V., "Application of Isooctane to the Dehydration of Ethanol. Design of a Column Sequence to Obtain Absolute Ethanol by Heterogeneous Azeotropic Distillation," Ind. Eng. Chem. Res., 42, 140-144 (2003).
    Frankforter, G.B. and Cohen, L., "Equilibria in the Systems, Water, Acetone and Inorganic Salts," J. Am. Chem. Soc., 36, 1103-1134 (1914).
    Frankforter, G.B. and Frary, F.C., "Equilibria in Systems containing Alcohol, Salts and Water, Including a New Method of Alcohol Analysis," J. Phys. Chem., 17, 402-473 (1913).
    Ghanadzadeh Gilani, H., Ghanadzadeh Gilani, A., Shekarsaraee, S., and Uslu, H., "Liquid Phase Equilibria of the System (Water + Phosphoric Acid + 1-Octanol) at T = (298.2, 308.2, and 318.2) K," Fluid Phase Equilib., 316, 109-116 (2012).
    Ginnings, P.M. and Robbins, D., "Ternary Systems: Water, Tertiary Butanol and Salts at 30℃," J. Am. Chem. Soc., 52, 2282-2286 (1930).
    Ginnings, P.M. and Chen, Z.T., "Ternary Systems: Water, Isopropanol and Salts at 25℃," J. Am. Chem. Soc., 53, 3765-3769 (1931).
    Gmehling, J. and Onken, U. (1977), Vapor-Liquid Equilibrium Data Collection, DECHEMA, Frankfurt, Germany.
    Gmehling, J., Menke J., Krafczyk J., and Fischer K. (1994), Azeotropic Data, Part I and Part II, VCH-Publishers, Weinheim, New York, USA.
    Gomis, V., Font A., Pedraza R., and Saquete M.D., "Isobaric Vapor-Liquid and Vapor-Liquid-Liquid Equilibrium Data for the System Water + Ethanol + Cyclohexane," Fluid Phase Equilib., 235, 7-10 (2005).
    Gomis, V., Font A., and Saquete M.D., "Vapour-Liquid-Liquid and Vapour-Liquid Equilibrium of the System Water + Ethanol + Heptane at 101.3 kPa," Fluid Phase Equilib., 248, 206-210 (2006).
    Gomis, V., Font A., Pedraza R., and Saquete M.D., "Isobaric Vapor-Liquid and Vapor-Liquid-Liquid Equilibrium Data for the Water-Ethanol-Hexane System, "Fluid Phase Equilib., 259, 66-70 (2007).
    Gomis, V., Font A., and Saquete M.D., "Homogeneity of the Water + Ethanol + Toluene Azeotrope at 101.3 kPa," Fluid Phase Equilib., 266, 8-13 (2008).
    Gomis, V., Pequenin A., and Asensi J.C., "Isobaric Vapor-Liquid-Liquid Equilibrium and Vapor-Liquid Equilibrium for the System Water-Ethanol-1,4-Dimethylbenzene at 101.3 kPa," Fluid Phase Equilibr., 281, 1-4 (2009).
    Good, N.E., Winget G.D., Winter W., Connolly T.N., Izawa S., and Singh R.M.M., "Hydrogen Ion Buffers for Biological Research," Biochemistry, 5, 467-477 (1966).
    Gupta, B.S. (2012), Vapor Liquid Equlibria of Mixtures Containing Aromatics and Parafin or Aqueous Propanol in the Presence of Biological Buffer. PhD Thesis, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    Hartanto, D. (2013), Vapor-Liquid Equilibrium of Aqueous Alcohol Mixtures in the Presence of Biological Buffer TRIS or EPPS. Master Thesis, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    Hawley, G.G. (1981), Condensed Chemical Dictionary, 10th ed., Van Nostrand Reinhold Company Inc., Melbourne, Australia.
    Hayden, J.G. and O'Connell, J.P. (1975), A Generalized Method for Predicting Second Virial Coefficients, Ind. Eng. Chem. Process Des. Dev, 14 (3), 209-216.
    Herington, E.F.G. (1951), Tests for the Consistency of Experimental Isobaric Vapour-Liquid Equilibrium Data, J. Inst. Pet., 37, 457-470.
    Hong, G.B., Lee, M.J., and Lin, H.M., "Vapor−Liquid and Vapor−Liquid−Liquid Equilibria for Mixtures Containing Water, Ethanol, and Ethyl Benzoate," Ind. Eng. Chem. Res., 42, 4234-4240 (2003).
    Horsley, L.H. (1973), Azeotropic Data – III, Advances in Chemistry Series 116, Ed. R.F. Gould, American Chemistry Society, Washington, DC, USA.
    Iarc (1977), Some Fumigants, The Herbicides 2,4-D And 2,4,5-T, Chlorinated Dibenzodioxins And Miscellaneous Industrial Chemicals, International Agency for Research on Cancer, Lyons, France, 223-243.
    Johnson, A.I. and Furter, W.F. (1957), Salt Effect in Vapor-Liquid Equlibrium, Can. J. Technol., 34, 413-424.
    Kallet, R.H., Jasmer, R.M., Luce, J.M., Lin, L.H., and Marks, J.D. (2000), The Treatment of Acidosis in Acute Lung Injury with Tris-Hydroxymethyl Aminomethane (Tham), Am. J. Respir. Crit. Care Med., 161 (4 Pt 1), 1149-1153.
    King, C.J. (1980), Separation Processes, 2nd ed., Mc-Graw Hill, New York, USA.
    Kirk, R.E. and Othmer, D.F., (1978-1984), Encyclopedia of Chemical Technology, 3rd ed., Wiley Interscience, New York, USA.
    Kurihara, K., Oshita, T., Ochi, K., and Kojima, K. (2003), Vapor-Liquid Equilibrium Data for Methanol + 1,3-Dioxolane +Water and Constituent Binary Systems at 101.3 kPa. J. Chem. Eng. Data, 48, 102-106.
    Kojima K., Ochi K., and Nakasawa Y. (1969), Relationship between Liquid Activity Coefficient and Composition for Ternary Systems, Int. Chem. Eng., 9, 342-347.
    Kumar, J.A., Kalyani, P., and Saravanan, R. (2008), Studies on Pem Fuel Cells Using Various Alcohols for Low Power Applications, Int. J. Electrochem. Sci., 3, 961 – 969.
    Lee, H.Y. (2013), Personal Communication, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
    Li, Q., Zhu, W., Wang, H., Ran, X., Fu, Y., and Wang, B. (2012), Isobaric Vapor–Liquid Equilibrium for the Ethanol + Water + 1,3-Dimethylimidazolium Dimethylphosphate System at 101.3 kPa, J. Chem. Eng. Data, 57 (3), 696-700.
    Lucas-Lenard, J. and Lipmann, P. (1996), Separation of Three Microbial Amino Acid Polymerization Factors, National Academy os Sciences, Uppsala, Sweden.
    Masahiro K., Hitoshi K., and Mitsuho H. (1970), Apparatus for Measurement of Isobaric Dew and Bubble Points and Vapor-Liquid Equilibria. Methanol-Water and Water-Dioxane Systems. J. Chem. Eng. Data, 15 (4), 501-505.
    McNaught, A.D. and Wilkinson, A. (2009), IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"), Blackwell Scientific Publications, Oxford, England.
    Meranda, D. and Furter, W.F. (1971), Vapor-Liquid Equilibrium in Alcohol-Water Systems Containing Dissolved Acetate Salts, AlChE J., 17 (1), 38-42.
    Meranda, D. and Furter, W.F. (1972), Vapor-Liquid Equilibrium in Alcohol-Water Systems Containing Dissolved Halide Salts and Salt Mixtures, AlChE J., 18 (1), 111-116.
    Morrison, J.F., Baker, J.C., Meredith, H.C., Newman, K.E., Walter, T.D., Massie, J.D., Perry, R.L., and Cummings, P.T. (1990), Experimental Measurement of Vapor-Liquid Equilibrium in Alcohol/Water/Salt Systems, J. Chem. Eng. Data, 35 (4), 395-404.
    NIST Standard Reference Database No. 69, National Institute of Standard and Technology, USA (2011), Isopropyl Alcohol, Entry from NIST Chemistry WebBook, (http://webbook.nist.gov/cgi/cbook.cgi?ID=C67630&Mask=8)
    NIST Standard Reference Database No. 69, National Institute of Standard and Technology, USA (2011), 1-Propanol, Entry from NIST Chemistry WebBook (http://webbook.nist.gov/cgi/cbook.cgi?Name=1-propanol&Units=SI).
    NIST Standard Reference Database No. 69, National Institute of Standard and Technology, USA (2011), 2-Propanol, 2-Methyl, Entry from NIST Chemistry WebBook, (http://webbook.nist.gov/cgi/cbook.cgi?ID=75650).
    de Oliveira, L. H. and Aznar M., "(Liquid + Liquid) Equilibrium of {Water + Phenol + (1-Butanol, or 2-Butanol, or tert-Butanol)} Systems," J. Chem. Thermodyn., 42, 1379-1385 (2010).
    Ognisty, T.P. (1995), “ Analyze Distillation Columns with Thermodynamics”, Chem. Eng. Prog., 40–46.
    Orchilles, A.V., Miguel, P.J., Llopis, F.J., Vercher, E., and Martinez-Andreu, A. (2011), Isobaric Vapor–Liquid Equilibria for the Extractive Distillation of Ethanol + Water Mixtures Using 1-Ethyl-3-Methylimidazolium Dicyanamide, J. Chem. Eng. Data, 56 (12), 4875-4880.
    Osawa, S., Kariyone, K., Ichihara, F., Arai, K., Takagasa, N., and Ito, H. (2005), Development and Application of Serum Cholinesterase Activity Measurement Using Benzoylthiocholine Iodide, Clin. Chim. Acta, 351 (1-2), 65-72.
    Othmer, D.F. (1928), Composition of Vapors from Boiling Binary Solutions, Ind. Eng. Chem., 20 (7), 743-746.
    Papa, A.J. (2000), Propanols. Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, West Virginia, USA.
    Perry, R.H. and Chilton, C.H. (1973), Chemical Engineers’ Handbook. Chem. Engng. Series. 5th ed., McGraw Hill, Inc., New York, USA.
    Pinder K. L. (1973), Activity of Water in Solution with Tetrahydrofuran. J. Chem. Eng. Data 18, 275–277.
    Pirahmadi, F., Dehghani, M. R., and Behzadi, B., "Experimental and Theoretical Study on Liquid–Liquid Equilibrium of 1-Butanol + Water + NH4Cl at 298.15, 308.15 and 318.15 K," Fluid Phase Equilib., 325, 1-5 (2012).
    Quitzsch, K., Kopp, R., Renker, W., and Geiseler, G. (1968), Ueber die Druckabhaengigkeit des azeotropbildenden Systems t-Butanol / Wasser. Z. Phys. Chem., 237, 256–266.
    Rackett, H.G. (1970), Equation of State for Saturated Liquids, J. Chem. Eng. Data, 15 (4), 514-517.
    Renon, H. and Prausnitz, J.M. (1968), Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures, AlChE J., 14 (1), 135-144.
    Sambrook, J. and Russell, D.W. (2012), Molecular Cloning: A Laboratory Manual. 3rd ed., Page A1.3, CSHL Press Cold Spring Harbor, New York, USA.
    Sandler, S.I (2006), Chemical, Biochemical, and Engineering Thermodynamics, 5th edition, John Wiley & Sons, Inc., New York, USA.
    Santodonato, J. (1985), Monograph On Human Exposure to Chemicals. In The Workplace: Isopropyl Alcohol, Center for Chemical Hazard Assessment, Syracuse Research Corporation, Syracuse, New York, USA.
    Smith, J.M., Van Ness, H. C., and Abbott, M. M. (2001), Chemical Engineering Thermodynamics, 6th edition, McGraw Hill, Inc., New York, USA.
    Taha, M., Teng, H.-L., and Lee, M.-J. (2013), Buffering-Out: Separation of Tetrahydrofuran, 1,3-Dioxolane, or 1,4-Dioxane from Their Aqueous Solutions Using EPPS Buffer at 298.15 K, Sep. Purif. Technol., 105, 33-40.
    Taha, M., Teng, H.-L., and Lee, M.-J. (2012), The Buffering-Out Effect and Phase Separation in Aqueous Solutions of EPPS Buffer with 1-Propanol, 2-Propanol, or 2-Methyl-2-Propanol at T= 298.15 K, J. Chem. Thermodyn., 47, 154-161.
    Van Ness, H.C. (1964), Classical Thermodynamics of Non-Electrolyte Solutions, Pergamon, p. 79, Oxford, England.
    Verschueren, K. (1983), Handbook Of Environmental Data On Organic Chemicals, 2nd ed., Van Nostrand Reinhold Company Inc., Melbourne, Australia.
    Vora, S.R., Thakore, S.B., Padhiyar, N., and Pathan A. (2013), A. Effect of Addition of LiBr Salt in Iso-propanol + Water Binary Azeotropic Mixture, IJSET, 2(4), 245-248.
    World Health Organization (2010), Guide to Local Production: Who-Recommended Handrub Formulation Series, WHO, Geneva, Switzerland.
    Xu, W. and Vogel, S.R. (2010), Combustible Mixed Butanol Fuels, United States Patent Application Publication, USA.
    Yamada, T. and Gunn, R.D. (1973), Saturated Liquid Molar Volumes. Rackett Equation, J. Chem. Eng. Data, 18 (2), 234-236.
    Zakhari, S. (1977), Isopropanol and Ketones in The Environment, CRC Press Oxford, England.
    戴文平,「恆溫下含糠醛及其衍生物混合物之汽液相平衡研究」,碩士論文,國立台灣科技大學,台北(2013)。
    方玫月,「添加生物相容緩衝劑HEPES-Na或離子液體[TMA][EPPS]之有機水溶液的液液相平衡研究」,碩士論文,國立台灣科技大學,台北(2013)。
    張勝瓏,「應用生物緩衝劑於分離共沸程序之設計與控制」,碩士論文,國立台灣科技大學,台北(2013)。
    鄧瀚嵐,「添加生物相容緩衝劑EPPS之有機水溶液的液液相平衡研究」,碩士論文,國立台灣科技大學,台北(2011)。

    QR CODE