簡易檢索 / 詳目顯示

研究生: 黃木槤
Richie Estrada
論文名稱: 高靈敏度、快速響應時間和真空蒸鍍小分子有機光電感測器:探索元件之設計和操作機制
High Sensitivity, Rapid Response Time, and Vacuum-Deposited Small Molecule Organic Photodetectors: Exploring Design Rules and Operational Mechanisms of Devices
指導教授: 李志堅
Chih-Chien Lee
劉舜維
Shun-Wei Liu
口試委員: 劉舜維
Shun-Wei Liu
張志豪
Chih-Hao Chang
黃炳綜
Ping-Tsung Huang
黃柏仁
Bohr-Ran Huang
范慶麟
Ching-Lin Fan
李志堅
Chih-Chien Lee
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 121
外文關鍵詞: small molecule-based, OPD, NFA, BHJ, Blend ratio
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • This study reports the small molecule-based organic photodetector (OPD) devices with the active layer that composed-blend of N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine (NPB) and boron subphthalocyanine chloride (SubPc) are acted as an electron donor and non-fullerene acceptor (NFA), respectively. The blend materials of 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) with molybdenum trioxide (MoO3) and fullerene (C60-based) with lithium fluoride (LiF) are structurally utilized as the interlayers, which respectively served as electron and hole blocking layer. For optimization purposes, four blend ratios of bulk heterojunction (BHJ) with the variants of 1:1, 1:2, 1:3, and 1:4 are proposed in this study. Those blend ratios are comprehensively evaluated to demonstrate the superior OPD performance metrics, such as low dark current density (Jd), high-efficiency photocurrent density (Jph) with high-efficiency, high-specific detectivity (D*), a wide cut-off frequency range (f-3dB), rapid transient photoresponse, and large magnitude linear dynamic range (LDR). In summary, at an applied bias of -5 V, BHJ with the blend ratio of 1:4 demonstrates a dark current density level of 2.017 × 10-9 A cm-2, a photocurrent density level of 6.740 × 10-3 A cm-2, an external quantum efficiency (EQE) of 60.131% with a responsivity of 0.257 A W-1, a specific detectivity level of 1.011 × 1013 Jones (Jd-based) at a wavelength of 530 nm, a cut-off frequency of 343.962 kHz (oscilloscope-based measurement), the rise/fall time (R/F) of 0.731/0.631 µs (for transient photocurrent) as well as 0.947/0.929 µs (for transient photovoltage) based on a modulated pulse on a frequency of 300 kHz, and a linear dynamic range of 104.199 dB.

    Abstract i Acknowledgement ii Table of Contents iv List of Figures viii List of Tables xi Chapter 1 - Introduction 1 1.1 Background 1 1.2 Overview 7 1.3 Objective 8 1.4 Outline 8 Chapter 2 - Literature Review 10 2.1 Fundamental Knowledge 10 2.2 Research Imprint 16 Chapter 3 - Experimental Details 22 3.1 Materials and Fabrication Protocols 22 3.2 Setup and Measurement Protocols 24 Chapter 4 - Results and Discussion 31 Chapter 5 - Conclusion and Outlook 51 References 52 Appendix A 67 A.1 Transparent Glass, Opaque Glass, and ITO 67 A.2 Ultrasonicator 67 Appendix B 68 B.1 Full Area Masking 68 B.2 Active Area Masking 68 B.3 Cathode Masking 69 Appendix C 70 C.1 Chambers 70 C.2 Control Screen (Organic Chamber) 72 C.3 Control Screen (Metal Chamber) 73 C.4 Control Panel and Thickness Control 74 C.5 Profilometer 75 C.6 Tooling Factor Materials 76 C.7 Main and Elevator Control Screen 77 C.8 Glove Box and Atmospheric Control Panel 78 C.9 Cassette Rack 79 C.10 Epoxy Resin 80 C.11 UV Curing Station 81 Appendix D 82 D.1 Optical Spectrophotometer Measurement System 82 D.2 Surface Scanner Measurement System 82 D.3 Current Density-Voltage and Noise Signal Measurement System 83 D.4 External Quantum Efficiency and Responsivity Measurement System 84 D.5 Equivalent Circuit Measurement System (Dark Conditions) 85 D.6 Equivalent Circuit Measurement System (Exposure Conditions) 85 D.7 Cut-off Frequency and Transient Photoresponse Measurement System 85 D.8 Linear Dynamic Range Measurement System 86 Appendix E 87 E.1 UV-Vis Spectrophotometer Setup 87 E.2 Atomic Force Microscopy (AFM) Setup 88 E.3 LabVIEW Program (Dark Current Density-Voltage) 90 E.4 LabVIEW Program (Photocurrent Density-Voltage) 90 E.5 LabVIEW Program (External Quantum Efficiency and Responsivity) 91 E.6 Newport 818-UV Calibration (Datasheet Page 1 of 3) 92 E.7 Newport 818-UV Calibration (Datasheet Page 2 of 3) 93 E.8 Newport 818-UV Calibration (Datasheet Page 3 of 3) 94 E.9 Impedance Spectroscopy Setup (Unbiased Voltage with Full Frequency Mode) 95 E.10 Impedance Spectroscopy Setup (Voltage Sweep with Single Frequency Mode) 95 E.11 Impedance Spectroscopy Setup (Bias Voltage with Full Frequency Mode) 96 E.12 LabVIEW Program (Noise Current Density) 96 E.13 LabVIEW Program (Linear Dynamic Range) 97 Appendix F 98 F.1 Absorption Spectra 98 F.2 Absorption Coefficient Spectra 98 F.3 Equivalent Circuit, Norton Theorem*), Nyquist Plot, and Thermal Noise Current 99 F.4 Hole-Only Device [ITO (150 nm)/MoO3 (5 nm)/NPB:SubPc (1:X; 30 nm)/MoO3 (5 nm)/Ag (80 nm)] 100 F.5 Electron-Only Device [ITO (150 nm)/LiF (1 nm)/NPB:SubPc (1:X; 30 nm)/LiF (1 nm)/Ag (80 nm)] 101 F.6 J-V Characteristics (Hole-Only and Electron-Only Devices) 102 Appendix G 103 G.1 Graphical Abstract 103 G.2 Description 103 Appendix H 104 H.1 Autobiography 104 H.2 Publication Journals 106

    (1) Riede, M.; Lüssem, B.; Leo, K.; Rahman, A. Z. M. S. Organic Semiconductors ☆. In Reference Module in Materials Science and Materials Engineering; Elsevier, 2018. https://doi.org/10.1016/B978-0-12-803581-8.10535-1.
    (2) Schöll, A.; Schreiber, F. Thin Films of Organic Molecules: Interfaces and Epitaxial Growth. In Molecular Beam Epitaxy; Henini, M., Ed.; Elsevier: Amsterdam, Netherlands, 2018; pp 551–570. https://doi.org/10.1016/b978-0-12-812136-8.00026-8.
    (3) Yang, D.; Ma, D. Development of Organic Semiconductor Photodetectors: From Mechanism to Applications. Adv. Opt. Mater. 2018, 7 (1), 1800522. https://doi.org/10.1002/adom.201800522.
    (4) Saleh, J.; Haider, S.; Akhtar, M. S.; Saqib, M.; Javed, M.; Elshahat, S.; Kamal, G. M. Energy Level Prediction of Organic Semiconductors for Photodetectors and Mining of a Photovoltaic Database to Search for New Building Units. Molecules 2023, 28 (3), 1240. https://doi.org/10.3390/molecules28031240.
    (5) Mishra, A.; Bäuerle, P. Small Molecule Organic Semiconductors on the Move: Promises for Future Solar Energy Technology. Angew. Chemie - Int. Ed. 2012, 51 (9), 2020–2067. https://doi.org/10.1002/anie.201102326.
    (6) Baeg, K.-J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y.-Y. Organic Light Detectors: Photodiodes and Phototransistors. Adv. Mater. 2013, 25 (31), 4267–4295. https://doi.org/10.1002/adma.201204979.
    (7) Dey, A.; Singh, A.; Das, D.; Iyer, P. K. Organic Semiconductors: A New Future of Nanodevices and Applications. In Thin Film Structures in Energy Applications; 2015; pp 97–128. https://doi.org/10.1007/978-3-319-14774-1_4.
    (8) Natali, D.; Caironi, M. Organic Photodetectors. In Photodetectors: Materials, Devices and Applications; Nabet, B., Ed.; Woodhead Publishing: Sawston, 2016; pp 195–254. https://doi.org/10.1016/B978-1-78242-445-1.00007-5.
    (9) Cranston, R. R.; Lessard, B. H. Metal Phthalocyanines: Thin-Film Formation, Microstructure, and Physical Properties. RSC Adv. 2021, 11 (35), 21716–21737. https://doi.org/10.1039/d1ra03853b.
    (10) Simone, G.; Dyson, M. J.; Meskers, S. C. J.; Janssen, R. A. J.; Gelinck, G. H. Organic Photodetectors and Their Application in Large Area and Flexible Image Sensors: The Role of Dark Current. Adv. Funct. Mater. 2020, 30 (20), 1904205. https://doi.org/10.1002/adfm.201904205.
    (11) Wei, Y.; Geng, Y.; Wang, K.; Gao, H.; Wu, Y.; Jiang, L. Organic Ultrathin Nanostructure Arrays: Materials, Methods and Applications. Nanoscale Adv. 2022, 4 (11), 2399–2411. https://doi.org/10.1039/d1na00863c.
    (12) Zhang, Q.; Hu, W.; Sirringhaus, H.; Müllen, K. Recent Progress in Emerging Organic Semiconductors. Adv. Mater. 2022, 34 (22), 2108701. https://doi.org/10.1002/adma.202108701.
    (13) Wadsworth, A.; Hamid, Z.; Kosco, J.; Gasparini, N.; McCulloch, I. The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications. Adv. Mater. 2020, 32 (38), 2001763. https://doi.org/10.1002/adma.202001763.
    (14) Zhang, Z.; Lin, Y. Organic Semiconductors for Vacuum-Deposited Planar Heterojunction Solar Cells. ACS Omega 2020, 5 (39), 24994–24999. https://doi.org/10.1021/acsomega.0c03868.
    (15) Kan, B.; Kan, Y.; Zuo, L.; Shi, X.; Gao, K. Recent Progress on All-Small Molecule Organic Solar Cells Using Small-Molecule Nonfullerene Acceptors. InfoMat 2021, 3 (2), 175–200. https://doi.org/10.1002/inf2.12163.
    (16) Samaeifar, F.; Aziz, H. The Root Causes of the Limited Electroluminescence Stability of Solution-Coated Versus Vacuum-Deposited Small-Molecule OLEDs: A Mini-Review. Front. Chem. 2022, 10, 857551. https://doi.org/10.3389/fchem.2022.857551.
    (17) Gao, H.; Sun, Y.; Meng, L.; Han, C.; Wan, X.; Chen, Y. Recent Progress in All-Small-Molecule Organic Solar Cells. Small 2023, 19 (3), 2205594. https://doi.org/10.1002/smll.202205594.
    (18) Pecunia, V. Efficiency and Spectral Performance of Narrowband Organic and Perovskite Photodetectors: A Cross-Sectional Review. J. Phys. Mater. 2019, 2 (4), 042001. https://doi.org/10.1088/2515-7639/ab336a.
    (19) El Jouad, Z.; El-Menyawy, E. M.; Louarn, G.; Arzel, L.; Morsli, M.; Addou, M.; Bernède, J. C.; Cattin, L. The Effect of the Band Structure on the Voc Value of Ternary Planar Heterojunction Organic Solar Cells Based on Pentacene, Boron Subphthalocyanine Chloride and Different Electron Acceptors. J. Phys. Chem. Solids 2020, 136, 109142. https://doi.org/10.1016/j.jpcs.2019.109142.
    (20) Wang, J.-L.; Xiao, F.; Yan, J.; Wu, Z.; Liu, K.-K.; Chang, Z.-F.; Zhang, R.-B.; Chen, H.; Wu, H.-B.; Cao, Y. Difluorobenzothiadiazole-Based Small-Molecule Organic Solar Cells with 8.7% Efficiency by Tuning of π-Conjugated Spacers and Solvent Vapor Annealing. Adv. Funct. Mater. 2016, 26 (11), 1803–1812. https://doi.org/10.1002/adfm.201505020.
    (21) Bourque, A. J.; Engmann, S.; Fuster, A.; Snyder, C. R.; Richter, L. J.; Geraghty, P. B.; Jones, D. J. Morphology of a Thermally Stable Small Molecule OPV Blend Comprising a Liquid Crystalline Donor and Fullerene Acceptor. J. Mater. Chem. A 2019, 7 (27), 16458–16471. https://doi.org/10.1039/c9ta01989h.
    (22) Lee, C.-C.; Estrada, R.; Li, Y.-Z.; Biring, S.; Amin, N. R. A.; Li, M.-Z.; Liu, S.-W.; Wong, K.-T. Vacuum-Processed Small Molecule Organic Photodetectors with Low Dark Current Density and Strong Response to Near-Infrared Wavelength. Adv. Opt. Mater. 2020, 8 (17), 2000519. https://doi.org/10.1002/adom.202000519.
    (23) Li, N.; Mahalingavelar, P.; Vella, J. H.; Leem, D.-S.; Azoulay, J. D.; Ng, T. N. Solution-Processable Infrared Photodetectors: Materials, Device Physics, and Applications. Mater. Sci. Eng. R Reports 2021, 146, 100643. https://doi.org/10.1016/j.mser.2021.100643.
    (24) Simone, G.; Dyson, M. J.; Weijtens, C. H. L.; Meskers, S. C. J.; Coehoorn, R.; Janssen, R. A. J.; Gelinck, G. H. On the Origin of Dark Current in Organic Photodiodes. Adv. Opt. Mater. 2020, 8 (1), 1901568. https://doi.org/10.1002/adom.201901568.
    (25) Li, S.; Liu, W.; Li, C.-Z.; Shi, M.; Chen, H. Efficient Organic Solar Cells with Non-Fullerene Acceptors. Small 2017, 13 (37), 1701120. https://doi.org/10.1002/smll.201701120.
    (26) Zhang, G.; Zhao, J.; Chow, P. C. Y.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chem. Rev. 2018, 118 (7), 3447–3507. https://doi.org/10.1021/acs.chemrev.7b00535.
    (27) Liu, J.; Gao, M.; Kim, J.; Zhou, Z.; Chung, D. S.; Yin, H.; Ye, L. Challenges and Recent Advances in Photodiodes-Based Organic Photodetectors. Mater. Today 2021, 51, 475–503. https://doi.org/10.1016/j.mattod.2021.08.004.
    (28) Li, T.; Chen, Z.; Wang, Y.; Tu, J.; Deng, X.; Li, Q.; Li, Z. Materials for Interfaces in Organic Solar Cells and Photodetectors. ACS Appl. Mater. Interfaces 2020, 12 (3), 3301–3326. https://doi.org/10.1021/acsami.9b19830.
    (29) Ahmad, N.; Zhou, H.; Fan, P.; Liang, G. Recent Progress in Cathode Interlayer Materials for Non‐fullerene Organic Solar Cells. EcoMat 2022, 4 (1), e12156. https://doi.org/10.1002/eom2.12156.
    (30) Shan, T.; Hou, X.; Yin, X.; Guo, X. Organic Photodiodes: Device Engineering and Applications. Front. Optoelectron. 2022, 15 (1), 49. https://doi.org/10.1007/s12200-022-00049-w.
    (31) Wang, Y.; Kublitski, J.; Xing, S.; Dollinger, F.; Spoltore, D.; Benduhn, J.; Leo, K. Narrowband Organic Photodetectors - towards Miniaturized, Spectroscopic Sensing. Mater. Horizons 2022, 9 (1), 220–251. https://doi.org/10.1039/d1mh01215k.
    (32) Wu, D.; Zhang, Y.; Liu, C.; Sun, Z.; Wang, Z.; Lin, Z.; Qiu, M.; Fu, D.; Wang, K. Recent Progress of Narrowband Perovskite Photodetectors: Fundamental Physics and Strategies. Adv. Devices Instrum. 2023, 4, 0006. https://doi.org/10.34133/adi.0006.
    (33) Tordera, D.; Peeters, B.; Akkerman, H. B.; van Breemen, A. J. J. M.; Maas, J.; Shanmugam, S.; Kronemeijer, A. J.; Gelinck, G. H. A High-Resolution Thin-Film Fingerprint Sensor Using a Printed Organic Photodetector. Adv. Mater. Technol. 2019, 4 (11), 1900651. https://doi.org/10.1002/admt.201900651.
    (34) Estrada, R.; Luo, D.; Lee, C.-C.; Iskandar, J.; Biring, S.; Al Amin, N. R.; Akbar, A. K.; Chen, C.-H.; Yu, C.-W.; Pham, T. M. D.; Liu, S.-W. Developing Efficient Small Molecule-Based Organic Photo-Couplers by Optimizing the Cathode Interfacial Layer in the Photodetector. J. Mater. Chem. C 2023, 11 (16), 5378–5387. https://doi.org/10.1039/d3tc00188a.
    (35) Beaumont, N.; Castrucci, J. S.; Sullivan, P.; Morse, G. E.; Paton, A. S.; Lu, Z.-H.; Bender, T. P.; Jones, T. S. Acceptor Properties of Boron Subphthalocyanines in Fullerene Free Photovoltaics. J. Phys. Chem. C 2014, 118 (27), 14813–14823. https://doi.org/10.1021/jp503578g.
    (36) Nielsen, C. B.; Holliday, S.; Chen, H.-Y.; Cryer, S. J.; McCulloch, I. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells. Acc. Chem. Res. 2015, 48 (11), 2803–2812. https://doi.org/10.1021/acs.accounts.5b00199.
    (37) Zhang, Z.; Yuan, J.; Wei, Q.; Zou, Y. Small-Molecule Electron Acceptors for Efficient Non-Fullerene Organic Solar Cells. Front. Chem. 2018, 6, 414. https://doi.org/10.3389/fchem.2018.00414.
    (38) Cui, Y.; Hong, L.; Hou, J. Organic Photovoltaic Cells for Indoor Applications: Opportunities and Challenges. ACS Appl. Mater. Interfaces 2020, 12 (35), 38815–38828. https://doi.org/10.1021/acsami.0c10444.
    (39) Wang, X.; Huang, J.; Li, J.; Yu, J. Effect of Organic Electron Blocking Layers on the Performance of Organic Photodetectors with High Ultraviolet Detectivity. J. Phys. D. Appl. Phys. 2016, 49 (7), 075102. https://doi.org/10.1088/0022-3727/49/7/075102.
    (40) Hadiyanto, M. Y.; Estrada, R.; Lee, C.-C.; Biring, S.; Akbar, A. K.; Li, C.-Y.; Shih, C.-J.; Li, Y.-Z.; Liu, S.-W. Transparent Photodetectors with Ultra-Low Dark Current and High Photoresponse for Near-Infrared Detection. Org. Electron. 2021, 99, 106356. https://doi.org/10.1016/j.orgel.2021.106356.
    (41) Khan, S.-U.-Z.; Rand, B. P. Influence of Disorder and State Filling on Charge-Transfer-State Absorption and Emission Spectra. Phys. Rev. Appl. 2021, 16 (4), 044026. https://doi.org/10.1103/PhysRevApplied.16.044026.
    (42) Sullivan, P.; Duraud, A.; Hancox, L.; Beaumont, N.; Mirri, G.; Tucker, J. H. R.; Hatton, R. A.; Shipman, M.; Jones, T. S. Halogenated Boron Subphthalocyanines as Light Harvesting Electron Acceptors in Organic Photovoltaics. Adv. Energy Mater. 2011, 1 (3), 352–355. https://doi.org/10.1002/aenm.201100036.
    (43) Lee, K.-H.; Leem, D.-S.; Castrucci, J. S.; Park, K.-B.; Bulliard, X.; Kim, K.-S.; Jin, Y. W.; Lee, S.; Bender, T. P.; Park, S. Y. Green-Sensitive Organic Photodetectors with High Sensitivity and Spectral Selectivity Using Subphthalocyanine Derivatives. ACS Appl. Mater. Interfaces 2013, 5 (24), 13089–13095. https://doi.org/10.1021/am404122v.
    (44) Ren, H.; Chen, J.-D.; Li, Y.-Q.; Tang, J.-X. Recent Progress in Organic Photodetectors and Their Applications. Adv. Sci. 2021, 8 (1), 2002418. https://doi.org/10.1002/advs.202002418.
    (45) Yoo, H.; Lee, I. S.; Jung, S.; Rho, S. M.; Kang, B. H.; Kim, H. J. A Review of Phototransistors Using Metal Oxide Semiconductors: Research Progress and Future Directions. Adv. Mater. 2021, 33 (47), 2006091. https://doi.org/10.1002/adma.202006091.
    (46) Schweda, B.; Reinfelds, M.; Hofstadler, P.; Trimmel, G.; Rath, T. Recent Progress in the Design of Fused-Ring Non-Fullerene Acceptors-Relations between Molecular Structure and Optical, Electronic, and Photovoltaic Properties. ACS Appl. Energy Mater. 2021, 4 (11), 11899–11981. https://doi.org/10.1021/acsaem.1c01737.
    (47) Hartnagel, P.; Ravishankar, S.; Klingebiel, B.; Thimm, O.; Kirchartz, T. Comparing Methods of Characterizing Energetic Disorder in Organic Solar Cells. Adv. Energy Mater. 2023, 13 (15), 2300329. https://doi.org/10.1002/aenm.202300329.
    (48) Nguyen-Tri, P.; Ghassemi, P.; Carriere, P.; Nanda, S.; Assadi, A. A.; Nguyen, D. D. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers (Basel). 2020, 12 (5), 1142. https://doi.org/10.3390/POLYM12051142.
    (49) Tailor, N. K.; Yukta; Ranjan, R.; Ranjan, S.; Sharma, T.; Singh, A.; Garg, A.; Nalwa, K. S.; Gupta, R. K.; Satapathi, S. The Effect of Dimensionality on the Charge Carrier Mobility of Halide Perovskites. J. Mater. Chem. A 2021, 9 (38), 21551–21575. https://doi.org/10.1039/d1ta03749h.
    (50) Chen, X.; Xu, Z.; Peng, Y.; Lv, W.; Ding, R.; Xu, S.; Sun, L. Enhanced Performance of Near Infrared and Broad Spectral Response Organic Photodiodes Exploiting NPB as Electron Blocking Layer. Infrared Phys. Technol. 2019, 102, 103001. https://doi.org/10.1016/j.infrared.2019.103001.
    (51) Huh, D. H.; Kim, G. W.; Kim, G. H.; Kulshreshtha, C.; Kwon, J. H. High Hole Mobility Hole Transport Material for Organic Light-Emitting Devices. Synth. Met. 2013, 180, 79–84. https://doi.org/10.1016/j.synthmet.2013.07.021.
    (52) Chen, H.; Gao, C.-H.; Jiang, Z.-Q.; Zhang, L.; Cui, L.-S.; Ji, S.-J.; Liao, L.-S. Spiro-Annulated Hole-Transport Material Outperforms NPB with Higher Mobility and Stability in Organic Light-Emitting Diodes. Dye. Pigment. 2014, 107, 15–20. https://doi.org/10.1016/j.dyepig.2014.03.006.
    (53) Zhang, J.; Yang, F.; Zheng, Y.; Wei, B.; Zhang, X.; Zhang, J.; Wang, Z.; Pu, W.; Yang, C. Effective Exciton Blocking by the Hole-Transporting Material 5,10,15-Tribenzyl-5H-Diindolo[3,2-a:3′,2′-c]-Carbazole (TBDI) in the Tetraphenyldibenzoperiflanthene (DBP) Based Organic Photovoltaic Cells. Appl. Surf. Sci. 2015, 357, 1281–1288. https://doi.org/10.1016/j.apsusc.2015.09.144.
    (54) Qiu, C.; Dumont, A.; Li, P.; Lu, Z.-H. Thermally Stable Charge Transport Materials for Vapor‐Phase Fabrication of Perovskite Devices. Adv. Photonics Res. 2021, 2 (4), 2000140. https://doi.org/10.1002/adpr.202000140.
    (55) Cao, W.-F.; Tu, H.-Y.; Wang, J.; Tian, H.; Wang, Y.; Gu, D.; Gan, F. Synthesis and Optical Properties of Axially Bromo-Substituted Subphthalocyanines. Dye. Pigment. 2002, 54 (3), 213–219. https://doi.org/10.1016/S0143-7208(02)00038-4.
    (56) Claessens, C. G.; Hahn, U.; Torres, T. Phthalocyanines: From Outstanding Electronic Properties to Emerging Applications. Chem. Rec. 2008, 8 (2), 75–97. https://doi.org/10.1002/tcr.20139.
    (57) Tian, H.; Sun, L. Organic Photovoltaics and Dye-Sensitized Solar Cells; Elsevier Ltd., 2013; Vol. 8. https://doi.org/10.1016/B978-0-08-097774-4.00809-3.
    (58) Boileau, N. T.; Cranston, R.; Mirka, B.; Melville, O. A.; Lessard, B. H. Metal Phthalocyanine Organic Thin-Film Transistors: Changes in Electrical Performance and Stability in Response to Temperature and Environment. RSC Adv. 2019, 9 (37), 21478–21485. https://doi.org/10.1039/c9ra03648b.
    (59) Jeon, P.; Kang, S. J.; Lee, H.; Lee, J.; Jeong, K.; Lee, J.; Yi, Y. Different Contact Formations at the Interfaces of C60/LiF/Al and C60/LiF/Ag. J. Appl. Phys. 2012, 111 (7), 073711. https://doi.org/10.1063/1.3700249.
    (60) Sun, Z.; Shi, S.; Bao, Q.; Liu, X.; Fahlman, M. Role of Thick-Lithium Fluoride Layer in Energy Level Alignment at Organic/Metal Interface: Unifying Effect on High Metallic Work Functions. Adv. Mater. Interfaces 2015, 2 (4), 1400527. https://doi.org/10.1002/admi.201400527.
    (61) Luo, Y.; Chen, X.; Zhang, C.; Li, J.; Shi, J.; Sun, Z.; Wang, Z.; Huang, S. AgAl Alloy Electrode for Efficient Perovskite Solar Cells. RSC Adv. 2015, 5 (69), 56037–56044. https://doi.org/10.1039/c5ra06133d.
    (62) Pakhomov, G. L.; Travkin, V. V.; Luk’yanov, A. Y.; Vopilkin, E. A.; Stuzhin, P. A. The Effect of Metal in MoOx/Metal/MoOx Anode on Open Circuit Voltage in Organic Photovoltaic Cells. Phys. Status Solidi Appl. Mater. Sci. 2018, 215 (13), 1700867. https://doi.org/10.1002/pssa.201700867.
    (63) Turak, A. On the Role of LiF in Organic Optoelectronics. Electron. Mater. 2021, 2 (2), 198–221. https://doi.org/10.3390/electronicmat2020016.
    (64) Sakomura, M.; Yokokura, Y.; Takagi, Y.; Ueda, K. Effect of Insertion of Bathocuproine Buffer Layer at Grating-Structured Cathode-Organic-Layer Interface in Bulk-Heterojunction Solar Cells. AIP Adv. 2020, 10, 015144. https://doi.org/10.1063/1.5129351.
    (65) Li, Y.; Chen, H.; Zhang, J. Carrier Blocking Layer Materials and Application in Organic Photodetectors. Nanomaterials 2021, 11 (6), 1404. https://doi.org/10.3390/nano11061404.
    (66) Chan, M. Y.; Lee, C. S.; Lai, S. L.; Fung, M. K.; Wong, F. L.; Sun, H. Y.; Lau, K. M.; Lee, S. T. Efficient Organic Photovoltaic Devices Using a Combination of Exciton Blocking Layer and Anodic Buffer Layer. J. Appl. Phys. 2006, 100, 094506. https://doi.org/10.1063/1.2363649.
    (67) Peumans, P.; Bulović, V.; Forrest, S. R. Efficient Photon Harvesting at High Optical Intensities in Ultrathin Organic Double-Heterostructure Photovoltaic Diodes. Appl. Phys. Lett. 2000, 76, 2650–2652. https://doi.org/10.1063/1.126433.
    (68) Peumans, P.; Yakimov, A.; Forrest, S. R. Small Molecular Weight Organic Thin-Film Photodetectors and Solar Cells. J. Appl. Phys. 2003, 93, 3693–3723. https://doi.org/10.1063/1.1534621.
    (69) Chodorow, M.; Symons, R.; Abe, D.; Abrams, R.; Danly, B.; Freund, H.; Jensen, K.; Levush, B.; Myers, R.; Parker, R.; Shaw, J.; Shih, A.; Yater, J. Electron Tubes. In Reference Data for Engineers: Radio, Electronics,Computer, and Communications; E. V. Valkenburg, M., M. Middleton, W., Eds.; Butterworth-Heinemann: Woburn, USA, 2002; pp 16-1–59. https://doi.org/10.1016/b978-075067291-7/50018-2.
    (70) Schwede, J. W.; Bargatin, I.; Riley, D. C.; Hardin, B. E.; Rosenthal, S. J.; Sun, Y.; Schmitt, F.; Pianetta, P.; Howe, R. T.; Shen, Z.-X.; Melosh, N. A. Photon-Enhanced Thermionic Emission for Solar Concentrator Systems. Nat. Mater. 2010, 9 (9), 762–767. https://doi.org/10.1038/nmat2814.
    (71) Benatto, L.; Marchiori, C. F. N.; Talka, T.; Aramini, M.; Yamamoto, N. A. D.; Huotari, S.; Roman, L. S.; Koehler, M. Comparing C60 and C70 as Acceptor in Organic Solar Cells: Influence of the Electronic Structure and Aggregation Size on the Photovoltaic Characteristics. Thin Solid Films 2020, 697, 137827. https://doi.org/10.1016/j.tsf.2020.137827.
    (72) Wen, Z.; Wang, T.; Chen, Z.; Jiang, T.; Feng, L.; Feng, X.; Qin, C.; Hao, X. Influence of Donor:Acceptor Ratio on Charge Transfer Dynamics in Non-Fullerene Organic Bulk Heterojunctions. Chinese Chem. Lett. 2021, 32 (1), 529–534. https://doi.org/10.1016/j.cclet.2020.02.013.
    (73) Lim, S.-J.; Leem, D.-S.; Park, K.-B.; Kim, K.-S.; Sul, S.; Na, K.; Lee, G. H.; Heo, C.-J.; Lee, K.-H.; Bulliard, X.; Satoh, R.-I.; Yagi, T.; Ro, T.; Im, D.; Jung, J.; Lee, M.; Lee, T.-Y.; Han, M. G.; Jin, Y. W.; Lee, S. Organic-on-Silicon Complementary Metal-Oxide-Semiconductor Colour Image Sensors. Sci. Rep. 2015, 5, 7708. https://doi.org/10.1038/srep07708.
    (74) Leem, D.-S.; Lee, K.-H.; Park, K.-B.; Lim, S.-J.; Kim, K.-S.; Jin, Y. W.; Lee, S. Low Dark Current Small Molecule Organic Photodetectors with Selective Response to Green Light. Appl. Phys. Lett. 2013, 103 (4), 043305. https://doi.org/10.1063/1.4816502.
    (75) Kim, D.-H.; Kim, K.-S.; Shim, H.-S.; Moon, C.-K.; Jin, Y. W.; Kim, J.-J. A High Performance Semitransparent Organic Photodetector with Green Color Selectivity. Appl. Phys. Lett. 2014, 105 (21), 213301. https://doi.org/10.1063/1.4902871.
    (76) Leem, D.-S.; Lee, K.-H.; Kwon, Y.-N.; Yun, D.-J.; Park, K.-B.; Lim, S.-J.; Kim, K.-S.; Jin, Y. W.; Lee, S. Low Dark Current Inverted Organic Photodetectors Employing MoOx:Al Cathode Interlayer. Org. Electron. 2015, 24, 176–181. https://doi.org/10.1016/j.orgel.2015.05.044.
    (77) Han, M. G.; Park, K.-B.; Bulliard, X.; Lee, G. H.; Yun, S.; Leem, D.-S.; Heo, C.-J.; Yagi, T.; Sakurai, R.; Ro, T.; Lim, S.-J.; Sul, S.; Na, K.; Ahn, J.; Jin, Y. W.; Lee, S. Narrow-Band Organic Photodiodes for High-Resolution Imaging. ACS Appl. Mater. Interfaces 2016, 8 (39), 26143–26151. https://doi.org/10.1021/acsami.6b07735.
    (78) Bulliard, X.; Jin, Y. W.; Lee, G. H.; Yun, S.; Leem, D.-S.; Ro, T.; Park, K.-B.; Heo, C.-J.; Satoh, R.-I.; Yagi, T.; Choi, Y. S.; Lim, S.-J.; Lee, S. Dipolar Donor-Acceptor Molecules in the Cyanine Limit for High Efficiency Green-Light-Selective Organic Photodiodes. J. Mater. Chem. C 2016, 4 (5), 1117–1125. https://doi.org/10.1039/c5tc03567h.
    (79) Heo, S.; Lee, J.; Kim, S. H.; Yun, D.-J.; Park, J.-B.; Kim, K.; Kim, N.; Kim, Y.; Lee, D.; Kim, K.-S.; Kang, H. J. Device Performance Enhancement via a Si-Rich Silicon Oxynitride Buffer Layer for the Organic Photodetecting Device. Sci. Rep. 2017, 7 (1), 1516. https://doi.org/10.1038/s41598-017-01653-z.
    (80) Lee, G. H.; Bulliard, X.; Yun, S.; Leem, D.-S.; Park, K.-B.; Lee, K.-H.; Heo, C.-J.; Jung, I.-S.; Kim, J.-H.; Choi, Y. S.; Lim, S.-J.; Jin, Y. W. Green-Light-Selective Organic Photodiodes for Full-Color Imaging. Opt. Express 2019, 27 (18), 25410–25419. https://doi.org/10.1364/OE.27.025410.
    (81) Lim, Y.; Yun, S.; Minami, D.; Choi, T.; Choi, H.; Shin, J.; Heo, C.-J.; Leem, D.-S.; Yagi, T.; Park, K.-B.; Kim, S. Green-Light-Selective Organic Photodiodes with High Detectivity for CMOS Color Image Sensors. ACS Appl. Mater. Interfaces 2020, 12 (46), 51688–51698. https://doi.org/10.1021/acsami.0c14237.
    (82) Kuo, K.-H.; Estrada, R.; Lee, C.-C.; Al Amin, N. R.; Li, Y.-Z.; Hadiyanto, M. Y.; Liu, S.-W.; Wong, K.-T. A New Dioxasilepine-Aryldiamine Hybrid Electron-Blocking Material for Wide Linear Dynamic Range and Fast Response Organic Photodetector. ACS Appl. Mater. Interfaces 2022, 14 (16), 18782–18793. https://doi.org/10.1021/acsami.2c04434.
    (83) Estrada, R.; Djohan, N.; Pasole, D.; Dahrul, M.; Kurniawan, A.; Iskandar, J.; Hardhienata, H.; Irzaman. The Optical Band Gap of LiTaO3 and Nb2O5-Doped LiTaO3 Thin Films Based on Tauc Plot Method to Be Applied on Satellite. IOP Conf. Ser. Earth Environ. Sci. 2017, 54 (1), 012092. https://doi.org/10.1088/1755-1315/54/1/012092.
    (84) Djohan, N.; Estrada, R.; Sari, D.; Dahrul, M.; Kurniawan, A.; Iskandar, J.; Hardhienata, H.; Irzaman. The Effect of Annealing Temperature Variation on the Optical Properties Test of LiTaO3 Thin Films Based on Tauc Plot Method for Satellite Technology. IOP Conf. Ser. Earth Environ. Sci. 2017, 54 (1), 012093. https://doi.org/10.1088/1755-1315/54/1/012093.
    (85) Kim, T.; Lee, D.; Kim, J.; Sohn, H. Trap-Controlled Space-Charge-Limited Conduction in Amorphous AsxTe1−x Thin Films with Ovonic Threshold Switching. Appl. Phys. Express 2020, 13 (4), 045003. https://doi.org/10.35848/1882-0786/ab827c.
    (86) Ugur, E.; Ledinský, M.; Allen, T. G.; Holovský, J.; Vlk, A.; De Wolf, S. Life on the Urbach Edge. J. Phys. Chem. Lett. 2022, 13 (33), 7702–7711. https://doi.org/10.1021/acs.jpclett.2c01812.
    (87) Li, M.; Huang, P.; Zhong, H. Current Understanding of Band-Edge Properties of Halide Perovskites: Urbach Tail, Rashba Splitting, and Exciton Binding Energy. J. Phys. Chem. Lett. 2023, 14 (6), 1592–1603. https://doi.org/10.1021/acs.jpclett.2c03525.
    (88) Shan, T.; Zhang, Y.; Wang, Y.; Xie, Z.; Wei, Q.; Xu, J.; Zhang, M.; Wang, C.; Bao, Q.; Wang, X.; Chen, C.-C.; Huang, J.; Chen, Q.; Liu, F.; Chen, L.; Zhong, H. Universal and Versatile Morphology Engineering via Hot Fluorous Solvent Soaking for Organic Bulk Heterojunction. Nat. Commun. 2020, 11 (1), 5585. https://doi.org/10.1038/s41467-020-19429-x.
    (89) Yu, X.; Yu, X.; Zhang, J.; Hu, Z.; Zhao, G.; Zhao, Y. Effective Light Trapping Enhanced Near-UV/Blue Light Absorption in Inverted Polymer Solar Cells via Sol–Gel Textured Al-Doped ZnO Buffer Layer. Sol. Energy Mater. Sol. Cells 2014, 121, 28–34. https://doi.org/10.1016/j.solmat.2013.10.032.
    (90) Li, C.; Chen, M.; Li, F.; Sun, X.; Yu, Z.; Tao, J.; Zou, Z.; Liao, G.; Zhang, J. Simulation of Light-Trapping Characteristics of Self-Assembled Nano-Ridges in Ternary Organic Film. Coatings 2022, 12 (9), 1340. https://doi.org/10.3390/coatings12091340.
    (91) Liu, T.; Jia, Z.; Song, Y.; Yu, N.; Lin, Q.; Li, C.; Jia, Y.; Chen, H.; Wang, S.; Wei, Y.; Lin, Y.; Huang, F.; Tang, Z.; Li, Y.; Meng, L.; Huang, H. Near Infrared Self-Powered Organic Photodetectors with a Record Responsivity Enabled by Low Trap Density. Adv. Funct. Mater. 2023, 33 (25), 2301167. https://doi.org/10.1002/adfm.202301167.
    (92) Gupta, G.; Banerjee, S.; Dutta, S.; Aarnink, A. A. I.; Schmitz, J.; Kovalgin, A. Y.; Hueting, R. J. E. Charge Carrier Transport and Electroluminescence in Atomic Layer Deposited Poly-GaN/c-Si Heterojunction Diodes. J. Appl. Phys. 2018, 124 (8), 084503. https://doi.org/10.1063/1.5041089.
    (93) Dahlström, S.; Ahläng, C.; Björkström, K.; Forsblom, S.; Granroth, B.; Jansson, K.; Luukkonen, A.; Masood, M. T.; Poulizac, J.; Qudsia, S.; Nyman, M. Extraction Current Transients for Mobility Determination-A Comparative Study. AIP Adv. 2020, 10 (6), 065203. https://doi.org/10.1063/5.0008802.
    (94) Kay, A. Operational Amplifier Noise; Newnes: Oxford, UK, 2012. https://doi.org/10.1016/C2009-0-18189-8.
    (95) Shih, C.-J.; Huang, Y.-C.; Wang, T.-Y.; Yu, C.-W.; Hsu, I.-S.; Akbar, A. K.; Lin, J.-Y.; Biring, S.; Lee, J.-H.; Liu, S.-W. Transparent Organic Upconversion Devices Displaying High-Resolution, Single-Pixel, Low-Power Infrared Images Perceived by Human Vision. Sci. Adv. 2023, 9 (17), eadd7526. https://doi.org/10.1126/sciadv.add7526.
    (96) Biele, M.; Benavides, C. M.; Hürdler, J.; Tedde, S. F.; Brabec, C. J.; Schmidt, O. Spray-Coated Organic Photodetectors and Image Sensors with Silicon-Like Performance. Adv. Mater. Technol. 2019, 4 (1), 1800158. https://doi.org/10.1002/admt.201800158.

    無法下載圖示 全文公開日期 2025/08/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE