簡易檢索 / 詳目顯示

研究生: 林建良
Chien-Liang Lin
論文名稱: 摻雜微量元素釕與氮對濺鍍銅膜熱穩定性之影響
Effects of minor Ru and N additions on thermal stability of sputtered Cu films
指導教授: 朱瑾
Jinn P. Chu
口試委員: 郭俞麟
Yu-lin Kuo
顏怡文
Yee-wen Yen
林宗新
Chon-hsin Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 83
中文關鍵詞: 銅合金薄膜無阻障層銅製程
外文關鍵詞: Cu alloy, thin film, barrierless Cu metallization
相關次數: 點閱:154下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體製程技術的演進,銅已被廣泛作為內連線材料,由於具有較低的電阻率和較好的抗電致遷移能力。然而,銅與介電層存在著附著力的問題,且低溫下,銅便會與矽產生反應,此銅矽物在IC結構中,會造成元件失效。為了防止銅矽相互擴散,需開發高度熱穩定性、低電阻率和良好附著力的無阻障層。因此,本研究以射頻磁控濺鍍法(RF)沈積銅釕合金薄膜,及在不同氮流量分率的環境下沈積其氮化物薄膜。
    我們研究了Cu(Ru)/Si和Cu(Ru, N)/Si之結構的熱穩定性,電阻量測顯示,經不同溫度退火(300°C ~650°C),持溫一小時,Cu(Ru)/Si結構的熱穩定達500°C,而Cu(Ru, N)/Si結構的熱穩定性可達550°C。由XRD和SEM結果,Cu(Ru, N)/Si經退火達650°C,似乎能有效的防止銅矽物擴散到表面;一旦銅矽物擴散至表面,且造成銅膜不連續時,電阻率會遽增。由以上觀察可知,改善Cu(Ru)/Si的熱穩定性,N扮演一個重要的角色。


    Copper (Cu) has been widely used as the interconnect material due to its lower electrical resistivity and better electromigration resistance. However, its poor adhesion, detrimental reactions between Cu and Si as well as the diffusion of Cu into Si or SiO2 substrates at relatively low temperatures have been serious problems. To prevent the rapid diffusion of Cu in interconnect technology, an effective barrierless layer with high thermal stability, low electrical resistivity and good adhesion is proposed. In this study, Cu(Ru) alloy and its nitride films were deposited by reactive radio-frequency (RF) magnetron sputtering in an Ar/N2 gas mixture.
    We investigated the thermal stability of the Cu(Ru)/Si and Cu(Ru, N)/Si systems. After annealing in vacuum at 300°C to 650°C for 1 hr, the resistivity measurement results show that the Cu(Ru) film was stable up to 500°C and Cu(Ru, N) was stable up to 550°C. According to XRD and SEM results, the Cu(Ru, N) seem to block the Cu3Si to diffuse out to the surface, even after a 650°C annealing; if Cu3Si diffuse to the surface and result in discontinuous film, it gives rise to obviously increases in resistivity. The improvement in thermal stability achieved by adding a minor amount of nitrogen into Cu(Ru) alloy film was observed, suggesting that N played an important role in the stability improvement.

    摘要 I Abstract II Acknowledgements III Table of Contents V List of Tables VI List of Figures VII Chapter 1 Introduction 1 Chapter 2 Background 7 2.1 Cu metallization properties 7 2.2 The necessity of the Cu alloy films 7 2.2.1 Prevention of Cu diffusion 8 2.2.2 Suppression of Cu film agglomeration 9 2.2.3 Decreasing of the electromigration rate of Cu 11 2.2.4 Improving the adhesion of Cu on a dielectric layer 12 2.2.5 Lowering the electrical resistivity 15 2.3 Barrierless Cu metallization 16 Chapter 3 Experimental Procedure 24 3.1 Experimental flow chart 24 3.2 Thin film deposition 25 3.3 Heat treatment 26 3.4 Material characterizations 27 3.4.1 Electron probe microanalysis (EPMA) 27 3.4.2 Secondary ion mass spectroscopy (SIMS) 28 3.4.3 X-ray photoelectron spectroscopy (XPS) 29 3.4.4 X-ray diffraction (XRD) 30 3.4.5 Scanning electron microscopy (SEM) 32 3.4.6 Transmission electron microscopy (TEM) 33 3.4.7 Focused Ion Beam (FIB) 34 3.4.8 Electrical resistivity measurement (4-Point probe) 35 3.4.9 Adhesion test 36 Chapter 4 Results and Discussion 37 4.1 Electrical resistivity analysis by 4-point probe 37 4.2 Chemical composition determined by EPMA 45 4.3 Depth profile analysis by SIMS 46 4.4 XPS analysis 48 4.5 Crystal structure, microstructure of Cu(Ru, N) films 50 4.5.1 XRD diffraction pattern results 50 4.5.2 SEM images 54 4.5.3 TEM cross-sectional images 63 4.6 Adhesion property 67 Chapter 5 Conclusions 69 References 70

    References
    [1] (2009). The international technology roadmap for semiconductor.
    [2] S. P. Murarka, I. V. Verner, and R. J. Gutmann, Copper-fundamental mechanisms for microelectronic applications: John Wiley, 2000.
    [3] T. L. Alford, L. Jian, J. W. Mayer, and W. Shi-Qing, "Copper-based metallization and interconnects for ultra-large-scale integration applications," Thin Solid Films, vol. 262, pp. vii-viii, 1995.
    [4] I. Barin, F. Sauert, E. Schultze-Rhonhof, and W. Shu Sheng, "Thermochemical data of pure substances / Ihsan Barin," ed: Weinheim, 1993.
    [5] H. Okamoto, "Cu-Ru (copper-ruthenium)," Journal of Phase Equilibria, vol. 13, pp. 440-440, 1992.
    [6] E. G. C. J. M. E. Harper, C-K. H, J. P. Hummel, L. P. Buchwalter and C. E. Uzoh, "Materials Issues in Copper Interconnections ", MRS Bulletin, 1994.
    [7] H. Treichel and C. Goonetilleke, "Integration Challenges for Low Dielectric Constant Materials," Advanced Engineering Materials, vol. 3, pp. 461-464, 2001.
    [8] S. M. Alam, F. L. Wei, C. L. Gan, C. V. Thompson, and D. E. Troxel, "Electromigration reliability comparison of Cu and Al interconnects," in Quality of Electronic Design, 2005. ISQED 2005. Sixth International Symposium on, 2005, pp. 303-308.
    [9] J. R. Lloyd and J. J. Clement, "Electromigration in copper conductors," Thin Solid Films, vol. 262, pp. 135-141, 1995.
    [10] A. Gladkikh, Y. Lereah, E. Glickman, M. Karpovski, A. Palevski, and J. Schubert, "Hillock formation during electromigration in Cu and Al thin films: Three-dimensional grain growth," Applied Physics Letters, vol. 66, pp. 1214-1215, 1995.
    [11] J. D. McBrayer, R. M. Swanson, and T. W. Sigmon, "Diffusion of Metals in Silicon Dioxide," Journal of The Electrochemical Society, vol. 133, pp. 1242-1246, 1986.
    [12] C. Chang, "Formation of copper silicides from Cu(100)/Si(100) and Cu(111)/Si(111) structures," Journal of Applied Physics, vol. 67, pp. 566-569, 1990.
    [13] I. Barin and G. Platzki, Thermochemical data of pure substances. Weinheim; New York: VCH, 1995.
    [14] H. Ono, T. Nakano, and T. Ohta, "Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M=Cr, Ti, Nb, Mo, Ta, W)," Applied Physics Letters, vol. 64, pp. 1511-1513, 1994.
    [15] T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi, and M. Murakami, "Diffusion barrier property of TaN between Si and Cu," Applied Surface Science, vol. 99, pp. 265-272, 1996.
    [16] Y.-L. Kuo, J.-J. Huang, S.-T. Lin, C. Lee, and W.-H. Lee, "Diffusion barrier properties of sputtered TaNx between Cu and Si using TaN as the target," Materials Chemistry and Physics, vol. 80, pp. 690-695, 2003.
    [17] S.-Q. Wang, S. Suthar, C. Hoeflich, and B. J. Burrow, "Diffusion barrier properties of TiW between Si and Cu," Journal of Applied Physics, vol. 73, pp. 2301-2320, 1993.
    [18] M. Y. Kwak, D. H. Shin, T. W. Kang, and K. N. Kim, "Characteristics of TiN barrier layer against Cu diffusion," Thin Solid Films, vol. 339, pp. 290-293, 1999.
    [19] S. Bong, Y.-J. Lee, J.-S. Hwang, and C.-O. Park, "Properties of reactively sputtered WNx as Cu diffusion barrier," Thin Solid Films, vol. 348, pp. 299-303, 1999.
    [20] J. Koike and M. Wada, "Self-forming diffusion barrier layer in Cu--Mn alloy metallization," Applied Physics Letters, vol. 87, pp. 041911-3, 2005.
    [21] T. Suwwan de Felipe, S. P. Murarka, S. Bedell, and W. A. Lanford, "Capacitance-voltage, current-voltage, and thermal stability of copper alloyed with aluminium or magnesium," Thin Solid Films, vol. 335, pp. 49-53, 1998.
    [22] W. H. Lee, H. L. Cho, B. S. Cho, J. Y. Kim, W. J. Nam, Y. S. Kim, W. G. Jung, H. Kwon, J. H. Lee, J. G. Lee, P. J. Reucroft, C. M. Lee, and E. G. Lee, "Diffusion barrier and electrical characteristics of a self-aligned MgO layer obtained from a Cu(Mg) alloy film," Applied Physics Letters, vol. 77, pp. 2192-2194, 2000.
    [23] W. A. Lanford, P. J. Ding, W. Wang, S. Hymes, and S. P. Muraka, "Low-temperature passivation of copper by doping with Al or Mg," Thin Solid Films, vol. 262, pp. 234-241, 1995.
    [24] H. O. T.B. Massalski, P.R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed.: ASM International, 1990.
    [25] S.-M. Yi, K.-H. Jang, J.-U. An, S.-S. Hwang, and Y.-C. Joo, "The self-formatting barrier characteristics of Cu–Mg/SiO2 and Cu–Ru/SiO2 films for Cu interconnects," Microelectronics Reliability, vol. 48, pp. 744-748, 2008.
    [26] H. Y. Chuang, C. H. Lin, J. P. Chu, and C. R. Kao, "Novel Cu–RuNx composite layer with good solderability and very low consumption rate," Journal of Alloys and Compounds, vol. 504, pp. L25-L27, 2010.
    [27] J. P. Chu and C. H. Lin, "High Performance Cu Containing Ru or RuNx for Barrierless Metallization," in Interconnect Technology Conference, 2008. IITC 2008. International, 2008, pp. 25-27.
    [28] J. P. Chu, C. H. Lin, and V. S. John, "Cu films containing insoluble Ru and RuNx on barrierless Si for excellent property improvements," Applied Physics Letters, vol. 91, pp. 132109-3, 2007.
    [29] D. Gupta, "Influence of solute segregation on grain-boundary energy and self-diffusion," Metall Trans A, vol. 8 A, pp. 1431-1438, 1977.
    [30] S. P. Murarka and S. W. Hymes, "Copper metallization for ULSL and beyond," Critical Reviews in Solid State and Materials Sciences, vol. 20, pp. 87-124, 1995.
    [31] C. L. Liu, "Screening beneficial dopants to Cu interconnects by modeling," Applied Physics Letters, vol. 80, pp. 763-765, Feb 2002.
    [32] H. Tohru, S. Kohji, and Y. Yuji, Control of the (111) orientation in copper interconnection layer vol. 5. Pennington, NJ, ETATS-UNIS: Institute of Electrical and Electronics Engineers, 2002.
    [33] J.-W. Lim, K. Mimura, and M. Isshiki, "Suppression of Cu agglomeration in the Cu/Ta/Si structure by capping layer," Science and Technology of Advanced Materials, vol. 4, p. 391, 2003.
    [34] R. Kroger, M. Eizenberg, E. Rabkin, D. Cong, and L. Chen, "The role of kinetics in the nucleation and void formation in copper films produced by chemical vapor deposition," Journal of Applied Physics, vol. 88, pp. 1867-1872, 2000.
    [35] J.-T. No, J.-H. O, and C. Lee, "Evaluation of Ti–Si–N as a diffusion barrier between copper and silicon," Materials Chemistry and Physics, vol. 63, pp. 44-49, 2000.
    [36] J.-Y. Lee, S.-R. Jeon, and J.-W. Park, "Effect of deposition conditions on the physical and electrical properties of reactive sputtered molybdenum nitride film," Journal of Materials Science Letters, vol. 15, pp. 1495-1497, 1996.
    [37] J. W. Cahn, "The impurity-drag effect in grain boundary motion," Acta Metallurgica, vol. 10, pp. 789-798, 1962.
    [38] C.-Y. Yang and J. S. Chen, "Investigation of Copper Agglomeration at Elevated Temperatures," Journal of The Electrochemical Society, vol. 150, pp. G826-G830, 2003.
    [39] A. T. Fromhold, Theory of Metal Oxidation: Space charge: North-Holland, 1980.
    [40] R. Landauer, "Residual resistivity dipoles," Zeitschrift fur Physik B Condensed Matter, vol. 21, pp. 247-254, 1975.
    [41] T. Mahalingam, C. H. Lin, L. T. Wang, and J. P. Chu, "Preparation and characterization of sputtered Cu films containing insoluble Nb," Materials Chemistry and Physics, vol. 100, pp. 490-495, 2006.
    [42] J. P. Chu, C. H. Lin, and Y. Y. Hsieh, "Thermal performance of sputtered insoluble Cu(W) films for advanced barrierless metallization," Journal of Electronic Materials, vol. 35, pp. 76-80, 2006.
    [43] C. H. Lin, J. P. Chu, T. Mahalingam, T. N. Lin, and S. F. Wang, "Thermal stability of sputtered copper films containing dilute insoluble tungsten: Thermal annealing study," vol. 18, pp. 1429-1434, 2003.
    [44] M. Damayanti, T. Sritharan, S. G. Mhaisalkar, and Z. H. Gan, "Effects of dissolved nitrogen in improving barrier properties of ruthenium," Applied Physics Letters, vol. 88, p. 044101, 2006.
    [45] M. Kawamura, K. Yagi, Y. Abe, and K. Sasaki, "Effects of the Ar–N2 sputtering gas mixture on the preferential orientation of sputtered Ru films," Thin Solid Films, vol. 494, pp. 240-243, 2006.
    [46] J. P. Chu, C. H. Lin, P. L. Sun, and W. K. Leau, Cu(ReNx) for Advanced Barrierless Interconnects Stable Up To 730oC vol. 156. Pennington, NJ, ETATS-UNIS: Electrochemical Society, 2009.
    [47] C. H. Lin, W. K. Leau, and C. H. Wu, "Copper-Holmium Alloy Film for Reliable Interconnects," Japanese Journal of Applied Physics, vol. 49, p. 05FA03.
    [48] J. P. Chu, C. H. Lin, W. K. Leau, and V. S. John, "Thermal Stability Study of Cu(MoNx) Seed Layer on Barrierless Si," Journal of Electronic Materials, vol. 38, pp. 100-107, 2009.
    [49] C. H. Lin, "New Copper Alloy, Cu(SnNx), Films Suitable for More Thermally Stable, Electrically Reliable Interconnects and Lower-Leakage Current Capacitors," Japanese Journal of Applied Physics, vol. 50, p. 05EA04, 2011.
    [50] C. H. Lin, W. K. Leau, and C. H. Wu, "High-performance copper alloy films for barrierless metallization," Applied Surface Science, vol. 257, pp. 553-557, 2010.
    [51] C. H. Lin and W. K. Leau, "Copper-Silver Alloy for Advanced Barrierless Metallization," Journal of Electronic Materials, vol. 38, pp. 2212-2221, 2009.
    [52] R. E. Lee, Scanning Electron Microscopy and X-ray Microanalysis: Prentice Hall, 1993.
    [53] P. Scherrer, Gottinger Nachrichten Gesell, Phys. 2, 1918.
    [54] A. L. Patterson, "The Scherrer Formula for X-Ray Particle Size Determination," Physical Review, vol. 56, pp. 978-982, 1939.
    [55] L. B. Valdes, "Resistivity Measurements on Germanium for Transistors," Proceedings of the IRE, vol. 42, pp. 420-427, 1954.
    [56] C. Lee, "Diffusion Barrier Properties of (Ti,Zr)Nx Thin Films in ULSI Cu Metallization," NSC93-2214-E-011-016, 2004.

    無法下載圖示 全文公開日期 2017/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE