簡易檢索 / 詳目顯示

研究生: 陳柏存
Bo-tsun Chen
論文名稱: 以表面波譜法與支持向量機評估高溫損傷混凝土之性質
EVALUATION ON PROPERTIES OF DAMAGED CONCRETE BY ELEVATED TEMPERATURE USING METHODS OF SPECTRAL ANALYSIS OF SURFACE WAVE AND SUPPORT VECTOR MACHINE
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 陳振川
Jenn-Chuan Chern
王仲宇
Chung-Yue Wang
林宜清
Yi -Ching Lin
鄭家齊
Chia-Chi Cheng
陳鴻銘
Hung-Ming Chen
陳君弢
Chun-Tao Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 139
中文關鍵詞: 高溫混凝土爐石表面波譜法小波分析支持向量機
外文關鍵詞: high temperature, concrete, slag, the spectral analysis of surface wave (SASW), wavelet analysis, support vector machine (SVM)
相關次數: 點閱:997下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 混凝土為目前國內通用之建築材料,近年來爐石常用來添入混凝土以考量環保、工作性、經濟性與耐久性。火災則是常見災害之一,其中高溫常會造成混凝土結構物之損害,基於經劑性考量,部份結構構件經由適當的補強修復後繼續使用,因此對於高溫損傷程度之判斷相當重要,混凝土殘餘強度及其內部所受到之溫度為主要兩項用來判斷之指標。本研究中利用表面波譜法(SASW)來評估混凝土內部縱波(P-wave)波速以進一步推估混凝土殘餘強度,並利用支持向量機(SVM)具良好計算能力之特性進行評估混凝土內部所受到之溫度。
    首先製作以單一水膠比(W/B=0.6)灌製不同爐石取代量(0, 10, 30, 40, 60, 80%)置於高溫爐中分別以不同溫度(25, 200, 400, 600, 800oC)加熱後進行試驗,結果顯示在低於600oC時,較佳爐石取代量為20-30%,且當混凝土受到600oC高熱作用後,爐石取代量超過60%,其抗壓強度與動彈性模數下降相當顯著,同時利用統計迴歸方式得到不同爐石取代量與不同高溫之混凝土抗壓強度與動彈性係數之預測公式。
    另一方面,製作不同混凝土塊狀試體在單向度高溫作用後,以表面波譜法進行檢測。利用小波分析處理過濾實作檢測與數值模擬之接收器訊號後,可得到15~60 KHz之高頻訊號,進行頻散曲線繪製與內部縱波反算,與超音波速對照結果顯示,在400、600、800oC高溫作用後,經由實際檢測所計算出內部縱波波速平均誤差分別為10.0、5.5、12.0%,而數值模擬所計算出內部縱波波速平均誤差分別為8.7、8.7、10.6%。
    接著鑽心切片試驗結果(劈裂強度與吸水率)與超音波速量測結果可組合成四種輸入資料,並利用支持向量機以建立評估混凝土內部溫度之模式。結果顯示,含有高溫受損後混凝土內部縱波之資料組合,在訓練資料比分別為1/4及1/3時,其利用SVM評估內部高溫之正確率為77.37~81.23%與82.94~89.80%,不含高溫受損後混凝土內部縱波之資料組合,在訓練資料比分別為1/4及1/3時之正確率為53.33與61.37%。故可得知,高溫受損後之混凝土縱波波速為評估內部高溫歷程之重要資料。


    Concrete is one of the most commonly used construction materials in civil engineering. The slag is usually added to the concrete for considering its effects on the environment, workability, durability and economics in recent years. On the other hand, fire disaster is one of the familiar accidents which cause great damage of concrete building exposed to high temperature. For the economic consideration, some of these fire-damaged concrete buildings can be recovered to their usable functions through the repairing and retrofitting methods. Therefore, it is important to investigate the situation of damage induced by the exposure to high temperature. Both of the residual compressive strength and exposed temperature are usually used to evaluate the situation of damage. In this study, the spectral analysis of surface wave (SASW) is used to evaluate the internal P-wave velocity of concrete and further determine the compressive strength of concrete. In addition, the support vector machine (SVM) approach is used to evaluate the exposed temperature due to its advantage of computational efficiency.
    First, the concrete cylinder specimens (W/B=0.6) were cast using several slag replacements (0, 10, 30, 40, 60, 80%) and tested after being placed in the furnace to exposed different temperatures (25, 200, 400, 600, 800oC), respectively. The results show that the residual engineering capability of concrete has an optimum replacement of 20-30% slag under 600oC and the engineering properties of concrete are reduced significantly at each elevated temperature for the GGBFS replacement greater than 60%. Moreover, the equation of compressive strength and Young’s modulus of concrete (W/B=0.6) at age of 28 days between different slag replacements and exposed temperatures are obtained by statisical regression equations.
    Then, the concrete beam specimens were cast and exposed to one-sided temperature of 400, 600, 800oC, respectively. The spectral analysis of surface wave (SASW) method is used to evaluate the internal P-wave velocity of concrete from surface. In addition, the numerical simulation is also used to verify the results. Both of experimental and numerical signal are obtained the frequency range of 15-60 KHz by using the wavelet filter. The results show that the average error of experiment is 10.0, 5.5 and 12.0% with the concrete exposed to 400, 600, 800oC, respectively. The average error of numerical simulation is 8.7, 8.7 and 10.6% with the concrete exposed to 400, 600, 800oC, respectively.
    The testing results of ultrasonic pulse velocity (UPV) and temperature from disk-shaped specimens are generated and used as the training and testing data for SVM. By using the data of UPV, the correctness of predicted temperatures with 1/4 and 1/3 of total data set is in the ranges of 77.37-81.23% and 82.94~89.80%,, respectively. Without UPV, the correctness of predicted temperatures is reduced to 53.33% and 61.37%, respectively. As a result, the SVM analysis shows that the most effective parameter to increase the correctness index of the predicted exposed temperature was identified as the ultrasonic pulse velocity of concrete. It also shows that the accuracy of estimation for the SVM analysis increases with the increases of number of effective parameters and the ratio of training data sets to total data sets being considered in the calculation of SVM modeling.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅳ 目錄 Ⅴ 表目錄 Ⅸ 圖目錄 Ⅹ 壹、緒論 01 1-1 研究背景 01 1-2 研究項目與步驟 02 1-3 論文內容 02 貳、文獻回顧 06 2-1 混凝土高溫性質 06 2-1-1 混凝土組成材料性質變化 06 2-1-2 添加爐石粉之混凝土火害後工程性質變化 07 2-1-3 混凝土火害後殘餘工程性質檢測與評估 09 2-2 混凝土應力波檢測法 11 2-2-1 應力波型式與波傳原理 11 2-2-2 超音波法 13 2-2-3 暫態應力波檢測法 13 2-3 表面波譜法 14 2-3-1 表面波譜法之發展 14 2-3-2 表面波譜法之量測設置 16 2-3-3 頻散曲線之計算 16 2-3-4 內部縱波之反算 18 參、試驗計畫 22 3-1 試驗材料 22 3-2 試驗儀器與軟體 22 3-3 試驗配比 26 3-4 試驗項目與步驟 26 3-4-1 不同爐石取代量混凝土高溫後工程性質試驗 26 3-4-2 混凝土塊狀試體單面高溫作用後檢測 28 肆、試驗結果與分析 44 4-1不同爐石取代量對於混凝土高溫後工程性質之影響 44 4-1-1 抗壓強度 44 4-1-2 動彈性模數 45 4-1-3 超音波速 46 4-2不同爐石取代量混凝土高溫後工程性質預測公式之建立 47 4-2-1 顯著影響因子檢定(變異數分析) 47 4-2-2 複迴歸公式 48 4-3 混凝土受單面高溫作用後之工程性質 50 4-3-1 內部溫度分佈 50 4-3-2 超音波速檢測結果 51 4-3-3 鑽心切片試驗結果 52 4-3-4 綜合討論 55 伍、結合小波分析之表面波譜法檢測火害後混凝土結果分析與討論 81 5-1 小波分析理論 81 5-1-1 發展背景 81 5-1-2 多層解析度分析 82 5-1-3 連續小波轉換 83 5-2 結合小波分析之表面波譜法 83 5-2-1 小波分析程式撰寫 84 5-2-2 相角遮蔽 84 5-2-3 嘉伯頻譜圖與脈衝反應過濾技術 85 5-3 以表面波譜法檢測火害後混凝土之分析結果 87 5-3-1 小波分析處理 87 5-3-2 計算平均頻散曲線 88 5-3-3 內部縱波反算 88 5-4 表面波譜法檢測火害後混凝土之數值模擬分析結果 88 5-4-1 建模與前處理 88 5-4-2 加載與求解 90 5-4-3 計算平均頻散曲線 90 5-4-4 內部縱波反算 90 5-5 綜合討論 91 5-6 小波分析濾波之影響 91 陸、以支持向量機(SVM)建立火害後混凝土內部不同高溫之評估模式 116 6-1 支持向量機簡介 116 6-2 支持向量機原理 117 6-2-1 線性支持向量機 117 6-2-2 非線性支持向量機 119 6-3 火害後混凝土內部不同高溫評估模式之建立 120 6-3-1 資料前處理 120 6-3-2 評估結果與分析 122 柒、結論與建議 123 7-1 結論 128 7-1-1 不同爐石取代量混凝土經高溫作用後之工程係質 128 7-1-2 結合小波分析之表面波譜法檢測高溫受損混凝土內部縱波波速 130 7-1-3 以支持向量機評估高溫受損混凝土內部高溫 131 7-2 建議 132 參考文獻 134 作者簡介 140

    1.內政部消防署全球資訊網,「消防統計年報(96年)」
    http://www.nfa.gov.tw/Show.aspx?MID=97&UID=824&PID=0
    2.Mindess, S., Young, J.F. and Darwin, D., Concrete, 2nd edition, Prentice-Hall Inc (2003).
    3.Bazant, Z.P. and Kaplan, M.F., ‘Concrete at High Temperatures: Material Properties and Mathematical Models,’ Longman, Harlow. (1996).
    4.Neville, A.M., Properties of Concrete, 4th edition, Longman, Harlow (1995).
    5.Mehta, P.K. and Monteiro, P.J.M., Concrete: Microstructure, Properties and Materials, 3rd edition, McGraw-Hill (2005).
    6.Schnider, U., ‘Behavior of Concrete at High Temperatures,’ Report to RILEM Committee 44-PHT (1983).
    7.林炳炎,「飛灰、矽灰、高爐爐石用在混凝土中」,三民書局,(1994)。
    8.行政院公共工程委員會,「公共工程高爐石混凝土使用手冊」,(2001)。
    9.黃兆龍,「卜作嵐混凝土使用手冊」,科技圖書股份有限公司,(2007)。
    10.Poon, C.S., Azhar, S., Anson, M., and Wong, Y.L., ‘Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures,” Cement and concrete research, Vol. 31, No. 9, pp. 106-112 (2001).
    11.Xiao, J., Xie, M. and Zhang, C., ‘Residual compressive behaviour of pre-heat high-performance concrete with blast-furnace-slag,’ Fire safety Journal, Vol. 41, No. 2, pp. 91-98 (2006).
    12.Mendes, A., Sanjayan, J. and Collins, F., ‘Phase transformations and mechanical strength of OPC/Slag pastes submitted to high temperatures,’ Materials and Structures. Vol. 41, No. 2, pp. 345-350 (2008).
    13.Wang, H.-Y., ‘The Effects of Elevated Temperature on Cement Paste Containing GGBFS,’ Cement and Concrete Composites, Vol. 30, No. 10, pp. 992-999 (2008).
    14.陳信智,「不同爐石含量混凝土高溫後之工程性質」,碩士論文,國立台灣科技大學營建工程系,(2008)。(in English)
    15.Mohamedbhai, G.T.G., ‘Effect of exposure time and rates of heating and cooling on residual strength of heated concrete,’ Magazine of Concrete Research, vol. 38, No.136, pp. 151-158 (1986).
    16.黃世建、廖迪發、陳舜田、沈進發,「鋼筋混凝土構件於火害後之強度評估方法」,第四屆結構工程研討會,台北,第521-522頁,(1998)。
    17.蔡佐良,「混凝土強度受高溫而折減之分析-溫時分析法」,建築物防災檢測與補強技術研討會,第13-20 頁,(1998)。
    18.沈進發、沈得縣,「混凝土結構物火害後安全評估程序之研訂」,內政部建築研究所研究報告,(1997)。
    19.Short, N.R., Purkiss, J.A. and Guise, S.E., ‘Assessment of fire damaged concrete using color image analysis,’ Construction and Building Materials, Vol. 15, No. 1, pp. 9-15, (2001).
    20.YüZer, N., Aköz, F. and Öztürk, L.D., ‘Compression strength-color change relation in mortars at high temperature,’ Cement and Concrete Research, Vol. 34, No. 10, pp. 1803-1807 (2004).
    21.Xu, Y., Wong, Y.L., Poon, C.S., Anson, M., ‘Influence of PFA on cracking of concrete and cement paste after exposure to high temperatures,’ Cement and Concrete Research, Vol. 33, No. 12, pp. 2009–2016 (2003).
    22.涂耀賢,「以燒失量試驗法推測混凝土受火害程度之研究」,碩士論文,臺灣科技大學營建工程系,(1990)。
    23.張顯宗,「混凝土火害混凝土性質變化之探討」,碩士論文,臺灣科技大學營建工程系,(1987)。
    24.Raina, S.J., Vishwanathan, V.N., Ghosh, S.N., ‘Instrumental techniques for investigation of damaged concrete,’ Indian Concrete Journal, Vol. 52, pp. 147– 149 (1978).
    25.Handoo, S. K., Agarwal S., Agarwal, S.K. and Ahluwalia, S.C., ‘Effect of temperature on the physico-chemical characteristics of hardened concrete,’ in: H. Justnes (Ed.), 10th International Congress of Chemistry of Cement, Vol. 4, No. 4IV 067, Gothenburg, Sweden, June 2 –6, (1997).
    26.Alarcon-Ruiz, L., Platret, G., Massieu, E., Ehrlacher A., ‘The use of thermal analysis in assessing the effect of temperature on a cement paste,’ Cement and Concrete Research, Vol. 35, No. 3, pp. 609–613 (2005).
    27.林尚賢,「以X光射線繞射試驗法推測混凝土受火害程度之研究」,碩士論文,臺灣科技大學營建工程系,(1987)。
    28.Saad, M., Abo-El-Rnein S.A., Hanna, G. B. and Kotkata M.F., ‘Effect of silica fume on the phase composition and microstructure of thermally treated concrete,’ Cement and Concrete Research, Vol. 26, No. 10, pp. 1479–1484 (1996).
    29.Sansalone, M. and Carino, N.J., Impact-Echo: A Method for Flaw Detection in Concrete Using Transient Stress Waves, National Bureau of Standards Report, NBSIR, No. 86-3452, Gaithersburg, Maryland: National Bureau of Standards. (1986).
    30.ASTM Test Designation C597-83, Standard Test Method for Pulse Velocity Through Concrete, Annual Book of ASTM Standards, Vol. 04.02, Philadelphia. (1987).
    31.Hall, G., ‘Ultrasonic wave visualization as a teaching aid in nondestructive testing,’ Ultrasonic, Vol. 15, No. 2, pp.57~70 (1977).
    32.Yang, H.-C., Lin, Y.-C., Hsiao, C.-M. and Jian, Y.-L., ‘Evaluating Residual Compressive Strength of Concrete at Elevated Temperatures using Ultrasonic Pulse Velocity,’ Fire Safety Journal, Vol. 44, No.1, pp. 121-130 (2009).
    33.Sansalone, M. and Pratt, G.D., Theory and Operation Manual for the Impact-Echo Field System, Department of Civil and Environmental Engineering, Report No. 92-2, Ithaca, New York: Cornell University (1992).
    34.ASTM C1383-04, Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method
    35.Thomson, W.T., ‘Transmission of Elastic Waves through a Stratified Solid Medium,’ Journal of Applied Physics, Vol. 21, pp. 89-93 (1950).
    36.Jones, R., ‘In-situ measurement of the dynamic properties of soil by vibration methods,’ Geotchnique, Vol. 8, No.1, pp.1-21 (1958).
    37.Dunkin, J.W., ‘Computation of Modal Solutions in Layered Elastic Media at High Frequencies,’ Bulletin of the Seismological Society of America, Vol. 55, No. 2, pp. 335-358 (1965).
    38.Nazarian, S., and Stokoe, II, K.H., ‘In Situ Determination of Elastic Moduli of Pavement Systems by Spectral-Analysis-of-Surface-Wave Method (Practical Aspects),’ Research Report 368-1F, Center for Transportation Research, The Univ. of Texas at Austin, pp. 27-99 (1985).
    39.Satoh, T., Poran, C.J., Yamagata, K., and Rodriquez, J.A., ‘Soil Profiling by Spectral Analysis of Surface Waves,’ Proceedings of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, pp. 1429-1434 (1991).
    40.Joh, S. H., Advances in Interpretation and Analysis Techniques for Spectral Analysis of Surface Waves Measurement, Ph. D. Dissertation, The Univ. of Texas at Austin, pp. 5-107 (1996).
    41.林盈政,「表面波譜法應用於偵測地下管線技術之初步研究」,碩士論文,國立成功大學土木工程研究所,(1996)。
    42.林潔興,「表面波頻散曲線之基因演算法反算土層剪力波速」,碩士論文,台灣大學土木工程系,(2000)。
    43.黃俊豪,「應用表面波譜法調查土層剪力波速之研究」,碩士論文,成功大學土木工程研究所,(2003)。
    44.江福壽,「頻散曲線評估土層剪力波速剖面之初步研究」,碩士論文,成功大學土木工程系,(2003)。
    45.施元瑋,「表面波譜法應用於礫石土液化潛能之研究」,碩士論文,中興大學土木工程系,(2004)。
    46.陳彥亨,「高低頻法於表面波譜法之應用分析」,碩士論文,成功大學土木工程系,(2005)。
    47.許惠綺,「表面波頻譜法不同震源及落距對現場頻散曲線影響之研究」,碩士論文,逢甲大學土木工程系,(2007)。
    48.Cho, Y.S. and Lin, F.B., ‘Integrity analysis of single and multi-layer thin cement mortar slab structures using the spectral analysis of analysis of surface wave NDT method,’ Construction and Building Materials, Vol. 14, No. 2, pp. 387-395 (2000).
    49.Cho, Y.S., ‘NDT response of spectral analysis of surface wave method to multi-layer thin high-strength concrete structures,’ Ultrasonics, Vol. 40, No.1-8, pp.227-230 (2002).
    50.Cho, Y.S. and Lin, F.B., ‘Dispersive characteristic measurement of multi-layer cement mortar slabs using SASW method and neural network,’ Computer & Structures, Vol. 81, No. 26-27, pp.2491-2499 (2003).
    51.Kim, D.S., Kim, H.W., Seo, W.S., Choi, K.C. and Woo, S.K., ‘Feasibility study of IE-SASW method for nondestructive evaluation of containment building structures in nuclear power plants,’ Nuclear Engineering and Design, Vol. 219, No. 2, pp.97-110 (2002).
    52.Kim, D.S., Seo, W.S. and Lee, K.M., ‘IE–SASW method for nondestructive evaluation of concrete structure,’ NDT & E International, Vol. 39, No. 2, pp. 143-154 (2006)
    53.Rix, G.J., Experimental Study of Factors Affecting the Spectral Analysis of Surface Waves Method, Ph. D. Dissertation, The Univ. of Texas at Austin, pp. 10~78, 121~128, 185~229, (1988)
    54.AL-Hunaidi, M.O., ‘Difficulties with Phase Spectrum Unwrapping in Spectral Analysis of Surface Waves Nondestructive Testing of Pavements,’ Canadian J. of Civil Engineering, Vol. 29, pp. 506-511, 1992.
    55.飛思科技產品研發中心編著,「小波分析理論與MATLAB 7實現」,電子工業出版社,(2005)。
    56.Haar, A., ‘Zur Theorie der orthogonalen Funktionensysteme,’ Mathematische Annalen, Vol. 69, No. 3, pp.331-371, (1910). (in German)
    57.Lemarie, P.G. and Meyer, Y., ‘Ondelettes et bases hilbertiennes,’ Revista Matematica Iberoamericana, Vol. 2, pp. 1-18, (1986).
    58.Mallat, S., ‘Multiresolution approximation and wavelet orthogonal bases of L2,” Transactions of the American Mathematical Society,’ Vol. 315, pp. 69–87, (1989).
    59.Daubechies, I. and Klauder, J.R., ‘Constructing measures for path integrals,’ Journal of Mathematical Physics, Vol. 23, No. 10, pp. 1806-1822, (1982).
    60.蒙以正等人編著,「數位信號處理:應用MATLAB」,旗標出版社,(2004)。
    61.萬永革編著,「數字信號處理的MATLAB實現」,科學出版社,(2007)。
    62.莊杰龍,「表面波相位差之強健性展開」,碩士論文,逢甲大學土木工程系,(2005)。
    63.楊君範,「混凝土結構敲擊反應波傳研究」,碩士論文,朝陽大學土木工程系,(2003)
    64.Vapnik, V., ‘The Nature of Statistical Learning Theory,’ Springer-Verlag Inc, (1995).
    65.Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M. and Haussler, D., ‘Support vector machine classification and validation of cancer tissue samples using microarray expression data,’ Bioinformatics, Vol. l6, No. 10, pp. 906-914 (2000).
    66.Kerheta, A., Raffettob, M., Bonia, A. and Massa, A., ‘A SVM-based approach to microwave breast cancer detection, Engineering Applications of Artificial Intelligence,’ Engineering Applications of Artificial Intelligence, Vol. 19, No. 7, pp. 807-818 (2006).
    67.Burges, C.J.C., ‘A Tutorial on Support Vector Machines for Pattern Recognition,’ Data Mining and Knowledge Discovery, Vol. 2, No. 2, pp.121-167 (1998).
    68.Yang, M.H., Roth, D. and Ahuja, N., ‘A tale of two classifiers: SNoW vs. SVM in visual recognition,’ Computer Vision - Eccv 2002, Pt Iv 2353, pp. 685-699 (2002).
    69.Leopold, E. and Kindermann, J., ‘Text Categorization with Support Vector Machines. How to Represent Texts in Input Space,’ Machine Learning, Vol. 46, No. 1-3, pp. 423-444 (2002).
    70.Chen, S.-T. and Yu, P.-S., ‘Pruning of support vector networks on flood forecasting,’ Journal of hydrology, Vol. 347, No. 1-2, pp. 67-78 (2007).
    71.Y. Aggarwal, ‘Modeling of Reinforcement in Concrete Beams Using Machine Learning Tools,’ Proceedings of world academy of science, engineering and technology, Vol. 26, ISSN 1307-6884, pp.253-256 (2007).
    72.Y. Q. Ni, X. G. Hua, K. Q. Fan, J. M. Ko, ‘Correlating modal properties with temperature using long-term monitoring data and support vector machine technique,’ Engineering Structures, Vol. 27, No. 12, pp. 1762-1773 (2005).
    73.Bhattacharya, B. and Solomatine, D.P., ‘Machine learning in soil classification,’ Neural Networks, Vol. 19, No. 3, pp. 186-195 (2006).
    74.李文通,「深開挖壁體變形預測-應用演化式支持向量機推論模式(ESIM)」,碩士論文,國立台灣科技大學營建工程系,(2008)。
    75.吳慶芳,「專案成功度動態預測-應用演化式支持向量機推論模式(ESIM)」,碩士論文,國立台灣科技大學營建工程系,(2008)。
    76.廖義宏,「建築工程損失機會預測-應用演化式支持向量機推論模式(ESIM)」,碩士論文,國立台灣科技大學營建工程系,(2008)。
    77.Siddique, R., Aggarwal, P., Aggarwal, Y. and Gupta, S.M., ‘Modeling properties of self-compacting concrete: support vector machines approach,’ Computers and Concrete, Vol. 5, No. 5, (2008).
    78.Chen, B.-T., Chang, T.-P., Shih, J.-Y. and Wang J.-J., ‘Estimation of Exposed Temperature for Fire-damaged Concrete using Support Vector Machine,’ Computational Materials Science, Vol. 44, No. 3, pp. 913-920, (2009).
    79.Cristianini, N. and Shawe-Taylor, J., ‘An Introduction to Support Vector Machines and Other Kernel-based Learning Method,’ Cambridge University Press, Cambridge. (2000).
    80.李國正、王猛、曹華軍譯,「支持向量機導論」,電子工業出版社,(2006)。
    81.C.-C. Chang and C.-J. Lin, “LIBSVM : a library for support vector machines,” (2001)
    <Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. >

    QR CODE