簡易檢索 / 詳目顯示

研究生: 廖庭慶
Ting-Qing Liao
論文名稱: 透過時脈抖動校正以量測矽光子干涉儀調頻連續波之距離與影像
Silicon Photonic Interferometer-based Frequency-Modulated Continuous-Wave Ranging and Image through Timing Jitter Correction
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 張勝良
Sheng-Lyang Jang
莊敏宏
Miin-Horng Juang
林敬舜
ChingShun Lin
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 74
中文關鍵詞: 光學雷達調頻連續波雷射非線性修正希爾伯特轉換矽光子主干涉儀輔助干涉儀
外文關鍵詞: Light Detection And Ranging(LiDAR), Frequency Modulated Continuous Wave (FMCW), Laser Nonlinearity Correction, Hilbert Transform, Silicon Photonics, Main Interferometer, Auxiliary Interferometer
相關次數: 點閱:165下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要................................................................................................................................. I Abstract ........................................................................................................................ III 致謝............................................................................................................................... V 目錄.............................................................................................................................. VI 圖目錄....................................................................................................................... VIII 表目錄........................................................................................................................... X 第一章 緒論................................................................................................................... 1 1.1 研究背景 .............................................................................................................. 1 1.2 研究動機 .............................................................................................................. 2 1.3 論文架構 .............................................................................................................. 3 第二章 理論................................................................................................................... 4 2.1 FMCW量測固定待測物理論 ............................................................................. 4 2.2 FMCW量測移動待測物理論 ............................................................................. 9 第三章 調頻非線性現象............................................................................................. 12 3.1調頻雷射非線性現象之成因 ............................................................................ 12 3.2使用Paek-valley position修正非線性現象 ..................................................... 13 3.3使用Hilbert-Transform以輔助干涉儀修正非線性現象 ................................. 16 3.4使用Hilbert-Transform以主干涉儀修正非線性現象 ..................................... 18 第四章 矽光子............................................................................................................. 22 4.1矽光子簡介 ........................................................................................................ 22 4.2矽波導 ................................................................................................................ 22 4.3光耦合元件 ........................................................................................................ 24 4.3.1光柵耦合器 ................................................................................................. 24 4.3.2邊緣耦合器 ................................................................................................. 26 4.4分光能量器元件 ................................................................................................ 27 4.4.1方向耦合器 ................................................................................................. 27 4.4.2多模干涉耦合器 ......................................................................................... 29 4.4.3光譜平坦的馬赫-曾德爾干涉儀 ................................................................ 30 第五章 實驗結果與分析............................................................................................. 32 5.1 主干涉儀重採樣修正非線性 ............................................................................ 32 5.1.1主干涉儀使用不同採樣方法之比較 ......................................................... 32 5.1.2掃描波長與量測極限的關係 ..................................................................... 35 5.1.3主干涉儀使用希爾伯特重採樣之量測極限 ............................................. 38 5.2 輔助干涉儀重採樣修正非線性 ........................................................................ 41 5.2.1輔助干涉儀使用不同採樣方法之比較 ..................................................... 41 5.2.2輔助干涉儀使用希爾伯特重採樣之量測極限 ......................................... 47 5.2.3輔助干涉儀長度極限之探討 ..................................................................... 50 5.2.4採樣率與量測極限的關係 ......................................................................... 51 5.3矽光子分光能量器在FMCW距離測量的探討 .............................................. 52 5.3.1光譜平坦度對系統解析度影響之探討 ..................................................... 52 5.3.2元件特性量測與比較 ................................................................................. 54 5.3.3光譜平坦對距離量測系統之影響 ............................................................. 58 5.3.4疊接形式之晶片型系統 ............................................................................. 62 5.4 FMCW LiDAR之三維掃描 .............................................................................. 67 第六章 結論及未來展望............................................................................................. 70 6.1 結論 .................................................................................................................... 70 6.2 未來展望 ............................................................................................................ 71 參考文獻...................................................................................................................... 72

[1] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, 187(4736), pp. 493-494, 1960.
[2] R. H. Rasshofer, M. Spies, and H. Spies, “Influences of weather phenomena on automotive laser radar systems,” Advances in Radio Science, 9, pp. 49-60, 2011.
[3] E. Guizzo, “How Google's self-driving car works,” IEEE Spectrum, 11 October, 2011.
[4] R. A. Soref, "Silicon-based optoelectronics," in Proceedings of the IEEE, 81(12), pp. 1687-1706, 1993.
[5] H. W. Yoo, N. Druml, D. Brunner, C. Schwarzl, T. Thurner, M. Hennecke, and G. Schitter, “MEMS-based lidar for autonomous driving,” e & i Elektrotechnik und Informationstechnik, 135, pp. 408-415, 2018.
[6] C. P. Hsu, B. Li, B. S. Rivas, A. R. Gohil, P. H. Chan, A. D. Moore, and V. Donzella, “A review and perspective on optical phased array for automotive LiDAR,” IEEE Journal of Selected Topics in Quantum Electronics, 27(1), pp. 1-16, 2020.
[7] B. Behroozpour, P. A. M. Sandborn, M. C. Wu, and Bernhard E. Boser, “Lidar system architectures and circuits,” IEEE Communications Magazine, 55(10), pp. 135-142, 2017.
[8] B.A. Mamyrin, “Time-of-flight mass spectrometry (concepts, achievements, and prospects),” International Journal of Mass Spectrometry, 206(3), pp. 251-266, 2001.
[9] Y. P. Li, and C. H. Henry, “Silica-based optical integrated circuits,” IEE Proceedings-Optoelectronics, 143(5), 263-280, 1996.
[10] D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica, Vol.3, pp. 887-890, 2016.
[11] C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, “High-performance integrated optical phased arrays for chip-scale beam steering and LiDAR,” CLEO, p. ATu3R.2, 2018.
[12] A. C. Lesina, D. Goodwill, E. Bernier, L. Ramunno, and P. Berini, “On the performance of optical phased array technology for beam steering: effect of pixel limitations,” Optics Express, 28(21), pp. 31637-31657, 2020.
[13] H. Al-Taiy, N. Wenzel, S. Preußler, J. Klinger, and T. Schneider, “Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy,” Optics Letters, 39(20), pp. 5826-5829, 2014.
[14] F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nature Photonics, 4(12), pp. 853-857, 2010.
[15] S. Naresh, V. Arseny, R. George, L. Victor, and Y. Amnon, “Precise control of broadband frequency chirps using optoelectronic feedback,” 17(18), pp. 15991-15999, 2009.
[16] M. Pichler, A. Stelzer, P. Gulden, C. Seisenberger, and M. Vossiek, “Phase-error measurement and compensation in PLL frequency synthesizers for FMCW sensors—I: Context and application,” IEEE Transactions on Circuits and Systems I: Regular Papers, 54(5), pp. 1006-1017, 2007.
[17] R. Wang, M. Xiang, B. Wang, and C. Li, “Nonlinear phase estimation and compensation for FMCW ladar based on synchrosqueezing wavelet transform,” IEEE Geoscience and Remote Sensing Letters, 2020.
[18] J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-Source optical coherence tomography,” Optics Express, 18(9), pp. 9511-9517, 2010.
[19] R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified,
frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Optics Express, 13(9), pp. 3513-3528, 2005.
[20] L. Song, G. Shi, H. Liu, H. Lin, F. Zhang, and D. Sun, “Phase
unwrapping and frequency points subdivision of the frequency sweeping
interferometry based absolute ranging system,” Sensors, 22(8), 2904, 2022.
[21] S. Jiang, B. Liu, H. Wang, and B. Zhao, “Absolute distance measurement using frequency-scanning interferometry based on Hilbert phase subdivision,” Sensors, 19, 5132, 2019.
[22] F. M. Zhang,L. P. Yi, and X. H. Qu, “Simultaneous measurements of velocity and distance via a dual-path FMCW lidar system,” Optics communications, 474, 126066, 2019.
[23] D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese Journal of Applied Physics, 45(8A), pp. 6071-6077, 2006.
[24] D. Dai, “Advanced passive silicon photonic devices with asymmetric waveguide structures,” Proceedings of the IEEE, 106(12), pp. 2117-2143, 2018.
[25] W. P. Huang, “Coupled-mode theory for optical waveguides: an overview,” Journal of the Optical Society of America A, 11(3), pp. 963-983, 1994.
[26] S. L. Chuang, “Application of the strongly coupled-mode theory to integrated optical devices,” IEEE Journal of Quantum Electronics, 23(5), pp. 499-509, 1987.
[27] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” Journal of Lightwave Technology, 13(4), 615-627, 1995.
[28] B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Optics express, 21(14), pp. 16648-16656, 2013.
[29] G. Dabos, A. Manolis, A.L. Giesecke, C. Porschatis, B. Chmielak, T. Wahlbrink, N. Pleros, D. Tsiokos, “TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform,” Optics Communications, 405, p. 35-38, 2017.

無法下載圖示 全文公開日期 2026/08/07 (校內網路)
全文公開日期 2026/08/07 (校外網路)
全文公開日期 2026/08/07 (國家圖書館:臺灣博碩士論文系統)
QR CODE