簡易檢索 / 詳目顯示

研究生: 陳昭長
Jhao-Jhang Chen
論文名稱: 新式壓控振盪器與注入鎖定除頻器之研究與實作
Design and Implementation of Novel Voltage-Controlled Oscillators and Injection-Locked Frequency Dividers
指導教授: 莊敏宏
Miin-Horng Juang
張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 138
中文關鍵詞: 電壓控制振盪器注入鎖定除頻器
外文關鍵詞: frequency synthesizer
相關次數: 點閱:291下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓控振盪器與除頻器是頻率合成器電路中,主要的電路之一。對壓控振盪器而言,低相位雜訊可避免相鄰雜訊訊號經由混波轉換的干擾。而振盪器的輸出則經由除頻器來達成降頻的工作,因此,除頻器需具有高頻操作,寬的操作頻寬及低功率消耗。
    本論文分別提出了二個電壓控制振盪器與一個注入鎖定除頻器,第一個是一利用注入鎖定完成低電壓四相位輸出電壓控制振盪器,第二個是一0.6伏低功耗阿姆斯壯電壓控制振盪器,第三個是一主動電感除二注入鎖定除頻器;前者是使用台積電0.35微米製程去實現,再者是使用台積電0.18微米製程去實現,而後者是使用台積電0.13微米製程去實現。
    首先,本論文呈現一利用注入鎖定完成低電壓四相位輸出電壓控制振盪器。此四相位電路籍著尾電感組成二個直接注入鎖定除頻器,在一注入鎖定除頻器中,尾電感輸出節點的二次諧波頻率成份,注入到另一注入鎖定除頻器的注入電晶體閘極,並互相耦合產生牽制而形成四相位輸出。電源0.8 V時操作在3.8 GHz 頻帶在1MHz偏移頻率下的相位雜訊為-119.41 dBc/Hz,且FOM為-183.52 dBc/Hz,功率消耗為5.6 mW,可調電壓由0 V至0.8 V,可調範圍從3.771GHz 至3.823 GHz,晶片面積為0.801 × 0.928 mm2。
    其次,呈現一0.6伏低功耗阿姆斯壯電壓控制振盪器。經由交叉偶合電晶體組成二個單端阿姆斯壯電壓控制振盪器獲得一差動輸出,並運用到閘極電壓比汲極電壓高的特性,可使得供應電源來的更小。電源0.6 V時操作在3.85 GHz 頻帶在1MHz偏移頻率下的相位雜訊為-120.02 dBc/Hz,且FOM為-188.5 dBc/Hz,功率消耗為2.1 mW,可調電壓由0 V至2.0 V,可調範圍從3.81 GHz 至4.36 GHz,晶片面積為0.951 × 0.589 mm2。
    最後,學生本人使用可調式主動電感實現一低功耗和寬操作頻帶除二之注入鎖定除頻器。一尾電晶體交叉偶合電壓控制振盪器設計新式主動電感之注入鎖定除頻器,且利用尾電晶體來當注入訊號端時,此電壓控制振盪器可當注入鎖定除頻器來使用。當可調電壓由0.67 V 至 0.81 V,可調範圍從3.78 GHz 至1.24 GHz,在注入訊號功率為0 dBm時,注入鎖定除二的操作頻帶為1.69 GHz 至 8.18 GHz,其鎖定範圍6.49 GHz。


    The key building blocks in the frequency synthesizer are the voltage-controlled oscillator (VCO) and the high frequency divider circuit. Most importantly, low phase noise is required to avoid corrupting the mixer-converted signal by close interfering tones for VCO circuit. The output of the VCO is divided down by the frequency divider which requires operating at high frequencies, wide operating range and lower power consumption.
    This thesis presents two voltage-controlled oscillators (VCO) and one injection locked frequency divider (ILFD), the first one is a low voltage quadrature VCO implemented with ILFDs, the second one is a 0.6 V low power Armstrong VCO and the final one is a high oscillation frequency active-inductor ILFD; the first one is implemented by using TSMC 0.35μm and the second is implemented by using TSMC 0.18μm, the final one is implemented by using TSMC 0.13μm CMOS process respectively.
    First, the quadrature voltage-controlled oscillator (QVCO) consists of two direct-injection locked frequency dividers (ILFDs) with a tail inductor. The 2nd harmonic frequency component at the output node of tail inductor in one ILFD is injected to the gate of injection MOSFET in the other ILFD to couple the two independent ILFDs. At the supply voltage of 0.8 V, the output phase noise of the QVCO is -119.41 dBc/Hz at 1MHz offset frequency from the carrier frequency of 3.8 GHz, and the figure of merit is -183.52 dBc/Hz. At the supply voltage of 0.8 V, the total power consumption is 5.6 mW. Tuning range is from 3.771 to 3.823 GHz, while the control voltage was tuned from 0 to 0.8 V. The die area is 0.801 x 0.928 mm2.
    Then a low power differential VCO is proposed, it consists of two single-ended Armstrong oscillators via cross-coupled transistors to obtain a differential output. At the supply voltage of 0.6 V, the output phase noise of the differential VCO is -120.02 dBc/Hz at 1 MHz offset frequency from the carrier frequency of 3.85 GHz, and the figure of merit is -188.5 dBc/Hz. Total VCO core power consumption is 2.1 mW. Tuning range is about 550 MHz, from 3.81 to 4.36 GHz, while the control voltage was tuned from 0 to 2.0 V.
    Finally, a low power and wide-operation frequency range divide-by-2 ILFD with tunable active inductor (TAI). The ILFD uses a new active-inductor to design a cross-coupled VCO with a tail transistor, and when the tail is used as injection MOSFET, the VCO can be used as an ILFD. The measured tuning range of VCO is from 3.78 GHz to 1.24 GHz while VT varies from 0.67 V to 0.81 V. The measured operation range is from 1.69 GHz to 8.18 GHz at the injection power of 0 dBm.

    中文摘要I AbstractIII 誌謝V Table of ContentsVI List of FiguresVIII List of TablesXII Chapter 1 Introduction1 1.1 BACKGROUND1 1.2 THESIS ORGANIZATION4 Chapter 2 Basic Theory and Techniques6 2.1 INTRODUCTION6 2.2 OSCILLATORS8 2.2.1 BASIC THEORY OF OSCILLATORS8 2.2.2 RING OSCILLATOR12 2.2.3 LC-TANK OSCILLATOR13 2.3 DESIGN CONCEPTS OF VOLTAGE CONTROLLED OSCILLATORS16 2.3.1 VCO CHARACTERISTIC PARAMETERS17 2.3.2 PHASE NOISE IN OSCILLATOR19 2.4 PARALLEL RLC TANK28 2.4.1 QUALITY FACTOR30 2.4.2 INDUCTOR DESIGN33 2.4.3 TRANSFORMER DESIGN42 2.4.4 CAPACITORS DESIGN52 2.4.5 VARACTORS DESIGN54 2.4.6 RESISTORS59 2.5 INJECTION LOCKED FREQUENCY DIVIDER61 2.5.1 PRINCIPLE OF INJECTION LOCKED FREQUENCY DIVIDER62 2.5.2 INJECTION LOCKING64 Chapter 3 Low Voltage Quadrature VCO Implemented With ILFDs68 3.1 INTRODUCTION68 3.2 TRADITIONAL QVCO CIRCUIT DESIGN71 3.3 TRADITIONAL QUADRATURE CMOS VCO DESIGN73 3.4 CIRCUIT DESIGN78 3.5 RESULTS AND DISCUSSION82 Chapter 4 A 0.6 V Low Power Armstrong Voltage-Controlled Oscillator86 4.1 INTRODUCTION86 4.2 DESIGN OF DIFFERENTIAL ARMSTRONG VCO87 4.3 MEASUREMENT AND DISCUSSION93 Chapter 5 High Oscillation Frequency Active-Inductor ILFD98 5.1 INTRODUCTION98 5.2 THE ACTIVE INDUCTOR99 5.3 CIRCUIT DESIGN104 5.4 MEASUREMENT RESULTS108 Chapter 6 Conclusion114 References117

    [1] K.K. Clarke and D.T. Hess. Communication Circuits: Analysis and design.
    Krieger, reprint edition, 1998.
    [2] I. Bahl and P. Bhartia. Microwave Solid State Circuit Design. Wiley, 1988.
    [3] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon-based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [4] B. Razavi, “RF Microelectronics,” Upper Saddle River, NJ: Prentice Hall, 1998.
    [5]P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005.
    [6]J.J. Rael, and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569–572, 2000.
    [7]T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000.
    [8]D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
    [9]A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [10]A. Hajimiri and T. H. Lee, “Design Issues in CMOS differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May 1999.
    [11]T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [12]H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
    [13]J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997
    [14]P. Yue, C. Ryu, JackLau, T. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996.
    [15]J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
    [16]E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, pp. 661-664, June 1989.
    [17]P. Andreani, and S. Mattisson, “On the use of MOS varactors in RF VCO’s,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 905-910, June 2000.
    [18]J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [19]Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
    [20]J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-um CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [21]H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [22]H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [23]M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
    [24]H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [25]R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
    [26]P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
    [27]W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    [28] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
    [29]S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, “A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1148–1154, Jul. 2003.
    [30]S.-L. Jang, Y.-H. Chung, S.-H. Lee, L.-R. Chi, and J.-F. Lee, “An integrated 5/2.5GHz direct-injection locked quadrature LC VCO,” IEEE Microw. Wireless Compon. Lett., pp.142-144, Feb. 2007.
    [31]Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
    [32]C.C. Boon, M.A. Do, K.S. Yeo, J.G. Ma and R.Y. Zhao, “Parasitic- Compensated Quadrature LC Oscillator,” IEE Proceedings: Circuits, Devices & Systems, Vol. 151, No. 1, pp. 45-48, Feb. 2004.
    [33]A. M. ElSayed and M. I. Elmasry, “Low-phase-noise LC quadrature VCO
    using coupled tank resonators in a ring structure,” IEEE J. Solid-State Circuits, vol. 36, pp. 701–705, Apr. 2001.
    [34]Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, and M.-H. Juang, “A low-voltage quadrature CMOS VCO based on voltage-voltage feedback topology,” IEEE Microw. Wireless Compon. Lett., pp.696-698, Dec. 2006.
    [35] H.-M. Chen, Y.-D. Jhuang, J.-C. Lin and S.-L. Jang, “A 5.6 GHz Balanced Colplitts QVCO With Back-gate Coupling Technique,” IEEE Electron Devices and Solid-State Circuits, pp.965-967, Dec. 2007.
    [36] S.-L. Jang, Y.-H. Chuang, C.-F. Lee and S.-H. Lee, “A 4.8GHz low-phase noise quadrature colpitts VCO,” Int. VLSI Design, Automation and Test Symp., pp. 1-4, Apr. 2006.
    [37] J.-S. Syu, C. Meng, K.-C. Tsung and G.-W. Huang, “5 GHz quadrature voltage-controlled oscillator using trifilar transformers,” Electronics Letters, vol. 44, no. 9, pp.562-562, Apr. 2008.
    [38]E. H. Armstrong, “Some recent developments in the audio receiver,” Proc. IRE, vol. 3, no. 9, pp. 215–247, Sept. 1915.
    [39]D. Baek, T. Song, E. Yoon and S. Hong, “8-GHz CMOS quadrature VCO using transformer -based LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 10, pp. 446–448, Oct. 2003.
    [40]N. T. Tchamov, T. Niemi, and N. Mikkola, “High-performance differential VCO based on Armstrong oscillator topology,” IEEE J. Solid-State Circuits, vol. 36, no. 1, pp. 139–141, Jan. 2001.
    [41]L. Perraud, J.-L. Bonnot, N. Sornin, and C.Pinatel, “Fully integrated 10 GHz CMOS VCO for multi-band WLAN applications,” European Solid-State Circuits Conference, Sept. 2003, pp. 353–356.
    [42]Y.-H. Chuang, S.-L. Jang, S.-H. Lee, R.-H. Yen, and J.-J.Jhao, “5-GHz low power current-reused balanced CMOS differential Armstrong VCOs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no.2, pp. 139–141, Feb. 2007.
    [43]D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, pp. 896–909, June 2001.
    [44]S. S. Broussev, T.A. Lehtonen, and N.T. Tchamov, “A Wideband Low Phase-Noise LC-VCO With Programmable KVCO,” IEEE Microw. Wireless Compon. Lett., vol.17, no. 4, pp. 274–276, Apr. 2007.
    [45]H.L. Kao, D.Y. Yang, Y.C. Chang, B.S. Lin, C.H. Kao, “Switched resonators using adjustable inductors in 2.4/5 GHz dual-band LC VCO,” IEEE Electronics Letters, vol. 44, no. 4, pp. 299–300, Feb. 2008.
    [46]S.-H. Lee, Y.-H. Chuang, S.-L. Jang and C.-C. Chen, “Low-phase noise Hartley differential CMOS voltage controlled oscillator,” IEEE Microw. Wireless Compon. Lett., vol.17, no. 2, pp.145–147, Feb. 2007.
    [47] S. Hara, T. Tokumitsu, and M. Aikawa, “Lossless, broadband monolithic microwave active inductors,” IEEE MTT-S Dig., pp. 955-958, 1989.
    [48] S.-L. Jang and C.-C. Liu, “Active inductor capacitor tank Colpitts injection locked frequency divider,” Microw. and Opt. Tech. Lett., vol.50, no.9, pp.2376-2379, Sept. 2008.
    [49] S.-L. Jang, C.-W. Tai, and C.-F. Lee, “Divide-by-3 injection locked frequency divider implemented with active inductor,” Microw. and Opt. Tech Lett., vol. 50, no. 6, pp.1682-1685, June, 2008.
    [50] S.-L. Jang, C.-W. Lin, C. C. Liu, and M.-H. Juang, “An active-inductor injection locked frequency divider with variable division ratio,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 1, pp. 39-41, Jan. 2009.
    [51] S.-L. Jang, C. C. Liu and C.-W. Chung ” A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., pp. 236-238, April, 2009.
    [52] S.-L. Jang, Jui-Cheng Han, Chien-Feng Lee, and J.-F. Huang, ” A small die area and wide locking range CMOS frequency divider ,” Microwave and Optical Technology Lett.,Vol. 50, no. 2, pp.541-544, Feb. 2008.
    [53] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” ISSCC Digest of Tech. Papers. pp. 412-413, Feb. 2001.

    QR CODE