簡易檢索 / 詳目顯示

研究生: 楊喻雯
Yu-Wen Yang
論文名稱: 開發仿生腦模擬器以及即時回饋式仿生脊椎模擬器-用於訓練臨床腦神經外科醫師手術教育訓練
The Creation of a Lifelike Brain Simulator and Real-Time Feedback Spine Simulator for Clinical Neurosurgeon Training
指導教授: 陳品銓
Pin-Chuan Chen
口試委員: 陳品銓
Pin-Chuan Chen
劉偉修
Wei-Hsiu Liu
林鼎晸
Ding-Zheng Lin
李昇憲
Sheng-Shian Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 126
中文關鍵詞: 仿生醫療模型腦神經外科醫療教育訓練3D列印黏彈性材料澆注訊號即時回饋系統脊髓內腫瘤清除手術腦瘤清除手術
外文關鍵詞: Bionic Medical Simulator, Neurosurgery, Medical Education and Training, 3D Printing, Viscoelastic Material Casting, Real-Time Signal Feedback System, Intradural-Intramedullary Surgery, Brain Cancer Surgery
相關次數: 點閱:210下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 培養外科醫師除了需要長期扎實的專業知識外,也需要累積大量的實際經驗來進行困難的手術。其訓練方法包括利用大體老師來讓學員們了解完整的人體結構,以及跟隨資深醫師進入手術室學習手術過程。為了彌補大體老師稀少且昂貴的缺點,醫學界早已開始開發醫療模擬器進行教育訓練,但是目前醫療模擬器(虛擬實境、3D列印模型)的真實度和真正人體還是有一段差距。對學員而言,虛擬實境訓練的無實際觸感回饋以及3D列印的擬真性不足都使這些訓練效果感受不夠真實。
    本研究與三軍總醫院神經外科合作,由臨床醫師針對腦部與脊椎神經部位進行詳細分析,以3D列印、澆注翻模、電子工程等技術創造出能滿足醫師手術練習需求的仿生模擬器。其模擬器可劃分為兩種: (1)仿生腦模擬器包含頭顱、腦葉、小腦、腦幹以及生長在腦葉裡的腫瘤。學員能夠使用此模擬器模擬從開顱手術到腫瘤切除一系列完整的腦瘤清除手術情境; (2)仿生脊椎模擬器包含脊椎骨、腦膜、生長在脊椎內的腫瘤以及具有訊號回饋的脊髓和神經監測系統。學員能用此模型進行從插針、磨骨到摘除腫瘤一整套的手術訓練,過程中能夠藉由此系統去觀察術中對神經的損害程度,作為判斷整體手術訓練的成效。


    Surgeons require not only lengthy and arduous training in professional knowledge but also copious amounts of practical experiences to conduct difficult surgeries and handle emergencies. Neurosurgical interns are currently trained in the intricacies of human anatomy, the assistance of cadavers and experienced surgeons. Unfortunately, cadavers are expensive, difficult to find, and differ greatly from actual patients. Moreover, trainees seldom have the chance to refine their skills through practical experiences. To bridge this gap, medical institutions have utilized medical simulators as part of their education programs. However, most simulators fail to capture the essence of actual surgery, stymying their widespread application. In order to improve the problems, we are collaborating with Director Liu to design the lifelike simulators using 3D printing, molding, casting techniques and electronic engineering, the simulators which are employed as a training tool for neurosurgery trainees, (such as ostectomy or tumor removing from brain lobes and spine). Moreover, the lifelike brain simulator (spine simulator) developed in this study demonstrates the efficacy of the proposed physical simulator in preparing trainees for the rigors involved in performing highly delicate surgical operations.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XIII 第1章 前言 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究方法 4 1.4 論文架構 5 第2章 文獻回顧 8 2.1 腫瘤生成之介紹 8 2.1.1 腦瘤 8 2.1.2 神經瘤 9 2.2 複雜結構之3D列印 12 2.3 利用3D列印搭配翻模技術製作醫療模型 14 2.4 術中神經功能監測(IONM) 17 2.5 導電高分子之導電機理 18 第3章 仿生腦模擬器之製程設計 20 第4章 仿生脊椎模擬器之製程設計 31 第5章 研究設備及實驗方法 58 5.1 仿生腦模擬器之研究設備 58 5.1.1 實驗設備 58 5.1.2 量測設備 60 5.1.3 材料介紹 61 5.2 仿生腦模擬器之實驗方法 64 5.2.1 以田口方法進行腦葉模型材料之比例計算 64 5.2.2 腦葉模型材料之分析 68 5.3 仿生脊椎模擬器之研究設備 75 5.3.1 實驗設備 75 5.3.2 量測設備 77 5.3.3 材料介紹 78 5.4 仿生脊椎模擬器之實驗方法 82 5.4.1 仿生脊椎模型與神經即時回饋系統之應用測試 82 5.4.2 脊椎內腫瘤清除手術之模擬訓練 83 第6章 結果與討論 85 6.1 仿生腦模擬器之實驗結果 85 6.1.1 腦葉模型之田口方法計算結果 85 6.1.2 腦葉模型之恢復性能分析結果 90 6.1.3 腦葉模型之外型持久度分析結果 92 6.1.4 腦葉模型之拉伸試驗分析結果 94 6.1.5 腦瘤清除手術之模擬訓練 96 6.2 仿生脊椎模擬器之實驗結果 98 6.2.1 仿生脊椎模型與神經即時回饋系統之應用測試 98 6.2.2 脊椎內腫瘤清除手術之模擬訓練結果 99 第7章 結論與未來展望 102 7.1 結論 102 7.1.1 腦葉模型材料之改良設計 102 7.1.2 脊髓模型製程與材料之相關測試 103 7.1.3 使用仿生醫療模擬器之訓練成效 103 7.2 未來展望 104 參考文獻 105

    1. Peyre, S.E., et al., A surgical skills elective can improve student confidence prior to internship. Journal of Surgical Research, 2006. 133(1): p. 11-15.
    2. Moreno-Ger, P., et al., Application of a low-cost web-based simulation to improve students’ practical skills in medical education. International journal of medical informatics, 2010. 79(6): p. 459-467.
    3. Choudhury, N., et al., Fundamentals of neurosurgery: virtual reality tasks for training and evaluation of technical skills. World neurosurgery, 2013. 80(5): p. e9-e19.
    4. Delorme, S., et al., NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Operative Neurosurgery, 2012. 71(suppl_1): p. ons32-ons42.
    5. Sharples, S., et al., Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays, 2008. 29(2): p. 58-69.
    6. Kuskuntla, R., E.S. Imsand, and J.D. Hamilton Jr. Enhanced expert field medical training simulations and their effect on the modern combat life saver training procedures. in Proceedings of the 2010 Spring Simulation Multiconference. 2010.
    7. Ryan, J.R., et al., Cerebral aneurysm clipping surgery simulation using patient-specific 3D printing and silicone casting. World neurosurgery, 2016. 88: p. 175-181.
    8. Weinstock, P., et al., Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects. Journal of Neurosurgery: Pediatrics, 2017. 20(1): p. 1-9.
    9. 江崇煊, 利用非傳統製程開發一仿生威利氏環腦動脈瘤醫療模型用於腦神經外科教育訓練, ed. 國立台灣科技大學機械工程系碩士論文. 2020, 台北市。取館.
    10. Kleihues, P., et al., The WHO classification of tumors of the nervous system. Journal of Neuropathology & Experimental Neurology, 2002. 61(3): p. 215-225.
    11. Mehrian Shai, R., J.K. Reichardt, and T.C. Chen, Pharmacogenomics of brain cancer and personalized medicine in malignant gliomas. 2008.
    12. Koo, Y.-E.L., et al., Brain cancer diagnosis and therapy with nanoplatforms. Advanced drug delivery reviews, 2006. 58(14): p. 1556-1577.
    13. Laquintana, V., et al., New strategies to deliver anticancer drugs to brain tumors. Expert opinion on drug delivery, 2009. 6(10): p. 1017-1032.
    14. Norden, A.D., J. Drappatz, and P.Y. Wen, Novel anti-angiogenic therapies for malignant gliomas. The Lancet Neurology, 2008. 7(12): p. 1152-1160.
    15. Muthu, M.S., et al., Nanotheranostics˗ application and further development of nanomedicine strategies for advanced theranostics. Theranostics, 2014. 4(6): p. 660.
    16. Muthu, M.S., L. Mei, and S.-S. Feng, Nanotheranostics: advanced nanomedicine for the integration of diagnosis and therapy. Nanomedicine, 2014. 9(9): p. 1277-1280.
    17. Herholz, K., et al., Brain Tumors. Seminars in Nuclear Medicine, 2012. 42(6): p. 356-370.
    18. 香港威創腦及脊椎神經外科手術中心. 脊椎內腫瘤. Available from: https://www.brainandspine.com.hk/%E8%84%8A/%E8%84%8A%E6%A4%8E%E5%85%A7%E8%85%AB%E7%98%A4/.
    19. 黃海東, 脊椎腫瘤徵狀及治療方法. 2021, 新傳媒集團.
    20. 閻紀宇. 3D列印簡介. 風傳媒 2013; Available from: https://www.storm.mg/article/21792.
    21. 三帝瑪有限公司. 【3D列印知識】新手入門:五種常見3D列印技術比較及原理. 2021; Available from: https://3dmart.com.tw/news/comparing-fff-sla-and-sls-technologies.
    22. Marro, A., T. Bandukwala, and W. Mak, Three-dimensional printing and medical imaging: a review of the methods and applications. Current problems in diagnostic radiology, 2016. 45(1): p. 2-9.
    23. Petzold, R., H.-F. Zeilhofer, and W. Kalender, Rapid prototyping technology in medicine—basics and applications. Computerized Medical Imaging and Graphics, 1999. 23(5): p. 277-284.
    24. Webb, P., A review of rapid prototyping (RP) techniques in the medical and biomedical sector. Journal of medical engineering & technology, 2000. 24(4): p. 149-153.
    25. Winder, J. and R. Bibb, Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. Journal of oral and maxillofacial surgery, 2005. 63(7): p. 1006-1015.
    26. Cohen, A., et al., Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2009. 108(5): p. 661-666.
    27. Salgueiro, M.I. and M.R. Stevens, Experience with the use of prebent plates for the reconstruction of mandibular defects. Craniomaxillofacial trauma & reconstruction, 2010. 3(4): p. 201-208.
    28. Toro, C., et al., Feasibility of preoperative planning using anatomical facsimile models for mandibular reconstruction. Head & face medicine, 2007. 3(1): p. 1-11.
    29. Zeller, A.-N., et al., Accurate and cost-effective mandibular biomodels: a standardized evaluation of 3D-Printing via fused layer deposition modeling on soluble support structures. Journal of Stomatology, Oral and Maxillofacial Surgery, 2021. 122(4): p. 355-360.
    30. Ploch, C.C., et al., Using 3D printing to create personalized brain models for neurosurgical training and preoperative planning. World neurosurgery, 2016. 90: p. 668-674.
    31. Mashiko, T., et al., Development of Three-Dimensional Hollow Elastic Model for Cerebral Aneurysm Clipping Simulation Enabling Rapid and Low Cost Prototyping. World Neurosurgery, 2015. 83(3): p. 351-361.
    32. Aoun, R.J.N., et al., Futuristic three-dimensional printing and personalized neurosurgery. World Neurosurgery, 2015. 4(84): p. 870-871.
    33. Møller, A.R., Neuromonitoring in operations in the skull base. The Keio Journal of Medicine, 1991. 40(3): p. 151-159.
    34. Harper, C.M., Intraoperative cranial nerve monitoring. Muscle & nerve, 2004. 29(3): p. 339-351.
    35. Costa, P., et al., Somatosensory-and motor-evoked potential monitoring during spine and spinal cord surgery. Spinal cord, 2007. 45(1): p. 86-91.
    36. 王仕漢, 多壁奈米碳管/導電型碳黑應用於複合型導電高分子之電性研究, ed. 國立交通大學半導體材料與製程產業碩士專班碩士論文. 2008, 新竹市.
    37. Dweiri, R. and J. Sahari, RETRACTED: Microstructural image analysis and structure–electrical conductivity relationship of single-and multiple-filler conductive composites. 2008, Elsevier.
    38. Taherian, R., M.J. Hadianfard, and A.N. Golikand, A new equation for predicting electrical conductivity of carbon‐filled polymer composites used for bipolar plates of fuel cells. Journal of applied polymer science, 2013. 128(3): p. 1497-1509.
    39. Van Beek, L. and B. Van Pul, Non-ohmic behavior of carbon black-loaded rubbers. Carbon, 1964. 2(2): p. 121-126.
    40. Sheng, P., E. Sichel, and J.I. Gittleman, Fluctuation-induced tunneling conduction in carbon-polyvinylchloride composites. Physical Review Letters, 1978. 40(18): p. 1197.
    41. Sichel, E.K., J.I. Gittleman, and P. Sheng, Transport properties of the composite material carbon-poly (vinyl chloride). Physical Review B, 1978. 18(10): p. 5712.
    42. Chen, J., Y. Zhu, and W. Jiang, A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer. Composites Science and Technology, 2020. 186: p. 107938.
    43. 教學實驗室, 東.普. 使用 Arduino 讀取電壓簡介. 2019; Available from: http://faculty.ndhu.edu.tw/~phys-exp/files/Arduino-Volt.pdf.
    44. waqast, HC-05 Bluetooth AT Mode can change NAME but not PIN. 2020: ARDUINO.
    45. Studio, M.T., How to change the name, password and baud rate of HC-05 bluetooth module. 2021.
    46. Jach的資訊與科技教學筆記, 手機透過藍芽來接收Arduino感測器資料,記錄Log、畫出圖表的App「Bluetooth Terminal/Graphics」. 2016: Blogger.
    47. cubie, HC-05與HC-06藍牙模組補充說明(一). 2014: 超圖解系列圖書.

    無法下載圖示 全文公開日期 2027/09/13 (校內網路)
    全文公開日期 2027/09/13 (校外網路)
    全文公開日期 2027/09/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE