簡易檢索 / 詳目顯示

研究生: 鄭建隆
chien-lung cheng
論文名稱: 振盪噴流通過平板之流場與熱傳的特徵
Flow and Heat Transfer Characteristics of Pulsating Jets Flowing Tangentially over a Flat Plate
指導教授: 黃榮芳
Rong Fung Huang
口試委員: 林怡均
Yi-Jiun Lin
黃榮芳
Rong Fung Huang
許清閔
Ching Min Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 165
中文關鍵詞: 振盪噴流熱傳流場特徵
外文關鍵詞: Flow and Heat Transfer Characteristics, Pulsating Jet, Flow
相關次數: 點閱:364下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究藉由實驗方法,研究振盪噴流通過平板時的流場特徵行為與熱傳特性。振盪噴流由合成噴流產生,藉由調整合成噴流的振盪頻率與振盪振幅,改變合成噴流的振盪特性。本研究發展兩種不同形式的振盪噴流:第一種是經由單一出口產生周期性的吹氣與吸氣,第二種是經由兩個獨立開口產生周期性的吹氣與吸氣。藉由調整合成噴流的制動參數,控制合成噴流的振盪特性,其中包含速度振盪頻率、速度振盪振幅、速度擾動強度及平均速度值。相關振盪噴流的振盪特性,使用熱線風速儀偵測。將不同振盪特性的合成噴流與平板結合,使得流過平板的合成噴流與平板相切,研究平板上方之流場的特徵行為及熱傳特性。在執行流場觀察實驗時,使用壓克力平板;然而,在執行熱傳實驗時,使用加熱平板。應用流場可視化的技術,在不同的振盪條件之下,觀察噴流經過平板上方的流場行為,時間上及空間上之平板上方的流場特徵行為將被呈現。使用質點影像速度儀量化平板上方的流場特徵結構之全域速度場,同時,在平板上方的速度向量場與流線圖都予以量化。使用紅外線熱顯像系統量測加熱平板上方的溫度分佈,針對不同的振盪特性,計算振盪噴流的熱傳性能,探討平板上方的流場特徵與熱傳性能之間的關係。


The flow and heat transfer characteristics of the pulsating jet flowing tangentially over a flat plate were experimentally investigated. The pulsating jet was generated by the synthetic jet. The pulsation properties of the pulsating jet were controlled by varying the pulsating frequency and amplitude of the synthetic jet. Two synthetic jets were developed in this study: One synthetic jet produced periodic ejection and suction of fluid from an opening, and the other synthetic jet generated the periodic ejection and the periodic suction of fluid from two respective openings. The jet pulsation properties of the pulsating jets, which include frequency, amplitude, and mean value of jet pulsation, were measured by hot-wire anemometer. The pulsating jets blew tangential along a flat plate. The flow characteristics were performed with an acrylic plate, while the heat transfer experiments were conducted with a heated plate. The effect of varying jet pulsation properties on the flow characteristics on the flat plate will be studied by flow visualization. The temporal and spatial evolution processes of the characteristic flow behavior on the flat plate were revealed. The velocity field on the flat plate at various characteristic flow modes will be quantified by employing the PIV technique. The velocity vector and streamline patterns on flat plate at various pulsating properties were simultaneously presented and discussed. The temperature distribution on the surface of the heated plate was scanned by an infrared imaging system. The heat transfer performances of the pulsating jets at various pulsating properties were determined to establish the correlation between the characteristic flow regimes and heat transfer performance.

摘要 i Abstract iii 致謝 iv 目錄…………………………………..………………………………….iv 符號索引……………………………………………………………..vii 圖表索引………………………………………………………………viii 第一章 緒論 1 1.1研究動機 1 1.2 文獻回顧 1 1.2.1壁面噴流 1 1.2.2 合成噴流 3 1.3研究目的 6 第二章實驗設備、儀器與方法 8 2.1 實驗設備與儀器 8 2.1.1 合成噴流模型 8 2.1.2 馬達及頻率控制系統 9 2.1.3 噴流速度振盪及頻率特徵量測 10 2.1.4 煙霧流場可視化 11 2.1.5 雷射光頁: 13 2.1.6 高速攝影機: 14 2.1.7 質點影像速度儀: 14 2.1.8 溫度量測 16 2.1.9 電子式流量計 16 2.2實驗步驟與方法 17 2.2.1實驗步驟 17 2.2.2實驗方法 19 第三章 振盪噴流之速度特性與流場特徵 22 3.1 雙孔合成噴流速度特性 22 3.2 雙孔合成噴流流場特徵行為 24 3.3 單孔合成噴流速度特性 25 第四章 振盪噴流在平行板上的流場可視化 28 4.1 流場特徵 28 4.1.1 垂直觀察面上的流場特徵 28 4.1.2水平觀察面上的流場特徵 30 4.2 連續噴流之流場特徵行為 33 第五章 振盪噴流在平行板上的速度特性 34 5.1速度特性 34 5.2 噴流之速度向量與流線圖 35 5.2.1平均速度相同之PIV比較 35 5.2.2振盪頻率相同之PIV 比較 39 5.2.3平均速度相同之連續噴流PIV 比較 41 5.3 結論 44 第六章 振盪噴流在加熱平板上的熱傳特性 45 6.1 自然對流熱傳特性 46 6.2 振盪噴流的熱傳特性 47 6.2.1 平均速度相同,不同偏心量與頻率下的熱傳特性 47 6.2.2 振盪頻率相同時,不同平均速度的散熱效果 52 6.2.3單孔振盪噴流散熱效果 55 6.2.4 連續噴流的散熱效果 57 6.3 討論 62 第七章 結論與建議 64 7.1 結論 64 7.2 建議 64 參考文獻 67

[1] Belvins, R. D., Applied Fluid Dynamics Handbook, Van Nostrand Reinhold Co., New York, 1984.
[2] Forthemann, E., “Turbulent jet expansion,”NACA Technical Memorandums, No. 789, 1936, pp. 1-18.
[3] Glauert, M. B., “The wall jet,”Journal of Fluid Mechanics, Vol. 1, 1956, pp. 625-643.
[4] Bradshaw, P. and Gee, M. T., “Turbulent wall-jets with and with external stream,”Aeronautics Research Councial Reports and Memoranda, No. 3252, 1960, pp. 1-48.
[5] Launder, B. E., “The turbulent wall jet – measurements and modeling,” Annual Review of Fluid Mechanics, Vol. 15, 1983, pp. 429-459.
[6] Gogineni, S. and Shih, C., “Experimental investigation of the unsteady structure of a transitional plane wall jet,”Experiments in Fluids, Vol. 23, No. 2, 1997, pp. 121-129.
[7] Gogineni, S. and Shih, C., “Phase-resolved PIV measurements in a transitional plane wall jet: a numerical comparison,”Experiments in Fluids, Vol. 27, No.2, 1999, pp. 126-136.
[8] Schwarz, W. H. and Caswell, B., “Some heat transfer characteristics of the two-dimensional laminar incompressible wall jet,”Chemical Engineering Science, Vol. 16, 1961, pp. 338-351.
[9] Bhattacharjee, P. and Loth, E., “Simulations of laminar and transitional cold wall jets,”International Journal of Heat and Fluid Flow, Vol. 25, 2004, pp. 32-43.
[10] Kanna, P. R. and Das, M. K., “Conjugate forced convection heat transfer from a flat plate by laminar plance wall jet flow,”International Journal of Heat and Mass Transfer, Vol. 48, 2005, pp. 2896-2910.
[11] Kanna, P. R. and Das, M. K., “Conjugate heat transfer study of two dimensional laminar incompressible offset jet flows,”Numerical Heat transfer, Part A, Vol. 48, 2005, pp. 671-691.
[12] Smith, B. L. and Glezer, A., “The formation and evolution of synthetic jets,”Physics of Fluids, Vol. 10, No. 9, 1998, pp. 2281-2297.
[13] Krishnan, G. and Mohseni, K., “An experimental and analytical investigation of rectangular synthetic jets,”Journal of Fluids Engineering ASME Transaction, Vol. 131, 2009, pp. 12110-1 – 12110-11.
[14] Krishnan, G. and Mohseni, K., “An experimental study of a radial wall jet formed by the normal impingement of a round synthetic jet,”European Journal of Mechanics B/Fluids, Vol. 29, 2010, pp. 269-277.
[15] Smith, B. L. and Swift, G. W., “A comparison between synthetic jets and continuous jets,”Experiments in Fluids, Vol. 34, 2003, pp. 467-472.
[16] McGuinn, A., Farrelly, R., Persoons, T., and Murray, D. B., “Flow regime characterization of an impinging axisymmetric synthetic jet,”Experimental Thermal and Fluid Science, Vol. 47, 2013, pp. 241-251.
[17] Cater, J. E. and Soria, J., “The evolution of round zero-net-mass-flux jets,”Journal of Fluid Mechanics, Vol. 472, 2002, pp. 167-200.
[18] Al-Atabi, M., “Experimental investigation of the use of synthetic jets for mixing in vessels,”Journal of Fluids Engineering (ASME Transactions), Vol. 133, 2011, 094503.
[19] Santhanakrishnan, A. and Jacob, J. D., “Flow control with plasma synthetic jet actuators,”Journal of Physics D: Applied Physics, Vol. 40, 2007, pp. 637-651.
[20] Santhanakrishnan, A., Reasor, J., and Lebeau, R., “Characterization of linear plasma synthetic jet actuators in an initially quiescent medium,”Physics of Fluids, Vol. 21, 2009. 043602.
[21] Pavlova, A. and Amitay, M., “Electronic cooling with synthetic jet impingement,”Journal of Heat Transfer, Vol. 128, 2006, pp. 897-907.
[22] Arik, M., “Local heat transfer coefficients of a high frequency synthetic jets during impingement cooling over flat surfaces,”Heat transfer Engineering, Vol. 29, 2008, pp. 763-773.
[23] Chaudhari, M. B., Puranik, B., and Agrawal, A., “Heat transfer characteristics of synthetic jet impingement cooling,”International Journal of Heat and Mass Transfer, Vol. 53, 2010, pp. 1057-1069.
[24] Chaudhari, M. B., Puranik, B., and Agrawal, A., “Effect of orifice shap in synthetic jet based impingement cooling,”Experimental Thermal and Fluid Science, Vol. 34, 2010, pp. 246-256.

無法下載圖示 全文公開日期 2020/02/06 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE