簡易檢索 / 詳目顯示

研究生: 葉豈廷
Chi-ting Yeh
論文名稱: 鋯基塊狀金屬玻璃模具熱壓製程數值模擬及轉印設備開發
Numerical Simulations of Hot Embossing Process for Fabricating Zr-Based Bulk Metallic Glass Mold and Validation of Imprint Machine
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 汪家昌
Jia-Chang Wang
趙修武
Shiu-Wu Chau
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 103
中文關鍵詞: 熱壓轉印設備數值模擬塊狀金屬玻璃
外文關鍵詞: hot embossing equipment, numerical simulation, bulk metallic glasses
相關次數: 點閱:301下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

微/奈米轉印技術是目前各界廣泛應用的新興技術,具有大量生產、低成本以及微奈米尺度解析度等優點。然而現階段此技術仍有模仁製作耗時且昂貴,以及難以被高效率使用的問題存在。近年來塊狀金屬玻璃(BMG)被證實具有高強度、高韌性以及在過冷液相區具有超塑性成形的性質,因此塊狀金屬玻璃被認為是用來製作微/奈米轉印模具的優秀材料。
在本研究中將數值模擬應用於(Zr48Cu36Al8Ag8)99.25Si0.75金屬玻璃熱壓轉印製程,並研究轉印時模穴的填充過程與金屬玻璃作為微/奈米轉印模具的可行性。本研究利用Computational fluid dynamics (CFD)商用模擬軟體,基於有限體積法(Finite volume method, FVM)的理論模擬材料於模穴中的填充行為,並利用熱壓數值模擬之填充結果,分析各種熱壓參數下其結構的整體填充情形。透過平均中心填充率與平均填充情形的研究,發現平均中心填充率與平均填充情形具有相同的趨勢,並且透過兩者變異量的研究,探討在不同操作參數下其結構填充後的均勻性。
另外,本論文針對所開發的塊狀金屬玻璃模具真空熱壓轉印設備進行研究,並針對設備之各項性能以及於熱壓微/奈米結構轉印製程的可行性進行探討。結果指出開發之真空熱壓轉印設備為一穩定、高精度之平台,並適合應用於金屬玻璃的微奈米熱壓轉印製程。


Micro/nano imprint technology is now widely used for future application and mass production because the technology has several advantages, such as nano scale resolution, low cost and high throughput. However, there are some limitations of current micro/nano imprinting. Especially the mold used in the process is very expensive and difficult to be used efficiently. In recent years, bulk metallic glasses (BMG) are proved to have high strength, high toughness and with superplastic forming properties in the supercooled liquid region. Therefore, bulk metallic glasses are considered to be excellent materials for fabricating micro / nano imprint molds.
In this study, numerical simulations were applied to the hot embossing process of (Zr48Cu36Al8Ag8)99.25Si0.75 bulk metallic glasses to study the cavity filling characteristics in the process and the feasibility of applying bulk metallic glasses for micro/ nano imprint molds. In this study, computational fluid dynamics (CFD) commercial simulation software, based on the finite volume method (FVM) was used for simulating the filling behavior, and we used the results of numerical simulation to analyze the effect of process parameters on the filling conditions. Through the simulated results, it is found that the average central filling rate and average cavity filling condition are with the same trend. The uniformity of filled cavities in different operating parameters was also discussed by analyzing the central filling rate variations and the average cavity filling condition variations in this study.
In addition, this thesis presents the development of a special vacuum hot embossing machine for fabricating bulk metallic glass molds and a study of its performances. The results show the developed machine can be a stable and high precision platform for performing metallic glass micro/nano imprinting process.

誌謝 I 摘要 II Abstract IV 圖目錄 XI 表目錄 XVI 第一章 緒論 1 1.1前言 1 1.2 研究動機與目的 2 1.3 論文架構 3 第二章 文獻回顧 6 2.1微/奈米轉印技術 6 2.1.1材料 7 2.1.1.1高分子 7 2.1.1.2 塊狀金屬玻璃(Bulk metallic glass, BMG) 9 2.1.2 模仁 10 2.2微/奈米轉印設備 11 2.3塊狀金屬玻璃簡介 19 2.4金屬玻璃特性 20 2.4.1 機械性質 21 2.4.2 耐腐蝕性 23 2.4.3 其他性質 24 2.5塊狀金屬玻璃之超塑性成形特性 26 2.6鋯基塊狀金屬玻璃 27 2.7 金屬玻璃數值分析製程模擬 29 第三章熱壓成形數值模擬 33 3.1數值模擬控制方程式 34 3.1.1數值模擬控制方程式[45-49] 34 3.1.2 動量守恆方程式[45-49] 34 3.1.3 流體體積法及自由液面效應[50-52] 36 3.2 模擬模型設置 38 3.2.1 邊界條件 39 3.2.2 收斂性條件 40 3.3 數值模擬成形分析規劃 41 3.3.1 金屬玻璃於模仁下壓速度與模仁受壓力之成形性 41 3.3.2 溫度效應 42 3.3.3 轉印壓力效應 43 3.3.4熱壓數值模擬平均結構中心填充率與填充情形量測方式 43 3.3.4.1 平均結構中心填充率與填充情形量測方式 43 3.3.4.2 平均結構中心填充率與填充情形量測方式 45 第四章 實驗規劃 47 4.1 真空微/奈米轉印設備設計及製作 47 4.1.1加壓系統 48 4.1.2 真空熱壓腔體 49 4.1.3 加熱系統 51 4.1.4 冷卻系統 52 4.2可程式控制系統及介面 53 4.2.1控制系統 54 4.3熱壓轉印成形製程規劃 55 4.3.1 設備穩定性測試 55 4.3.2模仁 55 4.3.3轉印材料 56 4.3.4真空熱壓轉印設備操作流程 59 4.4 量測儀器 62 4.4.1 密度量測 62 4.4.2 雷射共軛焦顯微鏡(Laser scanning confocal microscope) 62 4.4.3 掃描式電子顯微鏡(Scanning electron microscope, SEM) 63 第五章 熱壓模擬與實驗結果分析 64 5.1設備穩定性測試分析 64 5.1.1設定電壓與輸出壓力測試 64 5.1.2輸出壓力重複性測試 65 5.1.3人機介面之位置刻度與實際位置刻度之測試 66 5.1.4輸出壓力與位移量之測試 68 5.1.5輸出壓力與時間之穩定性測試 69 5.1.6加熱板溫度分佈測試 70 5.2 熱壓成形模擬結果分析 71 5.2.1 模仁下壓速度與模仁受壓力之成形性 71 5.2.2 填充狀態壓力場之成形相關性 73 5.2.3 溫度效應 76 5.2.4 時間效應 77 5.2.5 不同負荷壓力之效應 79 5.2.6 結構平均中心填充率與平均填充情形以及其變異量之量測結果 83 5.2.6.1 模仁下壓速度0.0275μm/sec 、填充時間600秒與轉印壓力125MPa時各溫度之中心填充率變異量與填充情形變異量 83 5.2.6.2 模仁下壓速度0.0275μm/sec 、填充時間600秒與轉印溫度 460 ℃時各壓力之中心填充率變異量與填充情形變異量 85 5.2.6.3 模仁下壓速度0.0275μm/sec 、填充時間600秒與轉印壓力400MPa時各溫度之中心填充率變異量與填充情形變異量 86 5.2.6.4 模仁下壓速度0.00825μm/sec 、填充時間2000秒與轉印壓力125MPa時各溫度之中心填充率變異量與填充情形變異量 88 5.2.6.5 模仁下壓速度0.00825μm/sec 、填充時間2000秒與轉印壓力40MPa時各溫度之中心填充率變異量與填充情形變異量 89 5.2.6.6 固定溫度與模仁下壓速度,填充時間600秒之比較結果 91 5.2.6.7 固定溫度與模仁下壓速度,填充時間2000秒之比較結果 92 5.2.6.8 固定溫度下,不同模仁下壓速度與時間之比較結果 93 5.2.6.8不同熱壓模擬參數下,各溫度之比較結果 93 第六章 結論與未來展望 96 6.1 結論 96 6.2 未來展望 98 參考文獻 99

1. S.Y. Chou, P.R. Krauss, P.J. Renstrom, “Nanoimprint lithography”,
Journal of Vacuum Science &Technology B, Vol.14, pp.4129–4133,
1997.
2. M. Heckele, W. Bacher, K.D. Muller, “Hot embossing – The molding technique for plastic micro structures”, MicrosystemTechnologies, Vol.4, pp.122-124, 1998.
3. F. Gottschalch, T. Hoffmann, C.M.S. Torres,H. Schulz, H.C. Scheer,
“Polymer issues in nanoimprinting technique”, Solid-State Electronics, Vol.43, pp.1079–1083, 1999.
4. H.C. Scheer, N. Bogdanski, M. Wissen, S. MOllenbeck,“Imprintability of polymers for thermal nanoimprint”, Microelectronic Engineering, Vol.8, pp.890–896, 2008.
5. J.P. Chu, H. Wijaya, C.W. Wu, T.R. Tsai, C.S. Wei, T.G. Nieh,
J. Wadsworth, “Nanoimprint of gratings on a bulk metallic glass”,
Applied Physics Letters, Vol.90, 034101, 2007.
6. Y. Saotome, K. Imai, S. Shioda, S. Shimizu, T. Zhang, A. Inoue, “The
micro-nanoformability of Pt-based metallic glass and the nanoforming
of three dimensional structure”, Intermetallics, Vol.10, pp.1241-1247,
2002.
7. Y. Saotome, Y. Fukuda, I. Yamaguchi, A. Inoue, “Superplastic
nanoforming of optical components of Pt-based metallic glass”,
Journal of Alloys and Compounds, Vol.434-435, pp.97-101, 2007.
8. K. Deguchi, N. Takeuchi, A. Shimizu, “Evaluation of pressure uniformity using a pressure-sensitive film and calculation of wafer distortions caused by mold press in imprint lithography”, Japanese Journal of Applied Physics, Vol.41, pp.4178-4181, 2002.
9. H.S. Lee, S.K. Lee, T.H. Kwon, S.S. Lee, “Birefringence distribution in V-grooved optical parts by hot embossing process”, IEEE/LEOS International Conference on Optical MEMS, pp.135-136, 2002.
10. H. Becker, U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures”, Sensors and Actuators, Vol.83, pp.130–135, 2000.

11. S.K. Hong, Y.M. Heo, J. Kang, “Replication of polymeric micro patterns by rapid thermal pressing with induction heating apparatus ”, Proceedings of the 3rd IEEE International Conference. on Nano/Micro Engineered and Molecular Systems January 6-9, Sanya, China, 2008.
12. S.H. Lan, H.J. Lee, E.H. Kim, J. Ni, S.H. Lee, X. Lai, J.H. Song, N.K. Lee, M.G. Lee, “A parameter study on the micro hot-embossing process of glassy polymer for pattern replication”, Microelectronic Engineering, Vol.86, pp.2369–2374, 2009.
13. J.C. Hung, Y.P. Tsai, C.H. Hung, “Development of a new apparatus for ultrasonic vibration-assisted glass hot
embossing process”, Precision Engineering, Vol.37, pp.222–227, 2013.
14. EVGR520HE, http://www.evgroup.com/en/
15. W. Klement, R.H. Willens, P. Duwez, “Non-crystalline structure in solidified gold-silicon alloys”, Nature, Vol.187, pp.869-870, 1960.
16. H.S. Chen, J.T. Krause, E. Coleman, “Elastic constants, hardness and their implications to flow properties of metallic glasses”, Journal of Non-Crystalline Solids, Vol.18, pp.157-171, 1975.
17. A. Inoue, A. Takeuchi, “Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys”, Mater Sci Eng A, pp. 375–377 , 2010.
18. http://www.liquidmetal.com/technology/default.asp
19. H. Ma, L.L. Shi, J. Xu, Y. Li, E. Ma, “Discovering inch-diameter metallic glasses in three-dimensional composition space”, Applied Physics Letters 87, 181915, 2005.
20. M.M. Avedesian, H. Baker, “Magnesium and magnesium alloys”, ASM International Handbook Committee, pp.314, 1999.
21. A. Inoue, B. Shen, H. Koshiba, H. Kato, A.R. Yavari, “Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys, Vol.52, pp.1631-1637, 2004.
22. 孫軍, 張國軍, 劉剛, 西安交通大學學報, Vol.35, pp.640-645, 2001.
23. A. Inoue, “Stabilization of metallic supercooled liquid and bulk
amorphous alloys”,Acta mater, Vol.48, pp.279-306, 2000.

24. D.C. Hofmann, J. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, et al, “Designing metallic glass matrix composites with high toughness and tensile ductility”, Nature, Vol.451, pp.1085–9, 2008.
25. T.C. Chieh, J. Chu, C.T. Liu, J.K. Wu, “Corrosion of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glasses in aqueous solutions”, Materials Letters, Vol.57, pp.3022-3025, 2003.
26. J. Schroers, Q. Pham, A. Desai, “Thermoplastic forming of bulk metallic glass technology for MEMS and microstructure fabrication”, Journal of MEMS, Vol.16, pp.240-247, 2007.
27. A. Inoue,“Bulk amorphous and nanocrystalline alloys with high functional properties”, Mater. Sci. Eng. A, Vol.304-306, pp.1-10, 2001.
28. A. Reger-Leonhard, M. Heilmaier, J. Eckert, “Newtonian flow of Zr55Cu30Al10Ni5 bulk metallic glassy alloys”, Scripta Mater, Vol.43, pp.459-464, 2000.
29. T.G. Nieh, J. Wadsworth, “Homogeneous deformation of bulk metallic glasses”, Scripta Mater, Vol.54, pp.387-392, 2005.
30. Y. Kawamura, T. Nakamura, A. Inoue, “Superplasticity in Pd40Ni40P20 metallic glass”, Scripta Mater, Vol.39, pp.301-306, 1998.
31. T.G. Nieh, J. Wadsworth, C.T. Liu, T. Ohkubo, Y. Hirotsu, “Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region”, Acta mater, Vol.49, pp.2887–2896, 2001.
32. T.G. Nieh, J. Wadsworth, “Homogeneous deformation of bulk metallic glasses”, Scripta Mater, Vol.54, pp.387-392, 2005.
33.惠希東, 陳國良, “塊體非晶合金”, 化學工業出版社, 2007.
34. J.S.C. Jang, C.F. Chang, Y.C. Huang, J.C. Huang, W.J. Chiang, C.T. Liu, “Viscous flow and microforming of a Zr-base bulk metallic glass”, Intermetallics, Vol.17, pp.200–204, 2009.
35. H.S. Wang, Y.Z. Su, J.S.C. Jang, H.G. Chen, ”A comparison of crystallization behaviors of laser spot welded Zr-Cu-Ag-Al and Zr-Cu-Ni-Al bulk metallic glasses”, Materials Chemistry and Physics, Vol.139, pp.215-219, 2013.
36. C.L. Qina, W. Zhang, Q.S. Zhang, K. Asami, A. Inoue, “Electrochemical properties and surface analysis of Cu–Zr–Ag–Al–Nb bulk metallic glasses”, Journal of Alloys and Compounds, Vol.483, pp.317–320, 2009.
37. Q.S. Zhang, W. Zhang, A. Inoue, “New Cu–Zr-based bulk metallic glasses with large diameters of up to 1.5 cm”, Scripta Materialia, Vol.55, pp.711-713, 2006.
38. P.H. Tsai, Y.Z. Lin, J.B. Li, S.R. Jian, J.S.C. Jang, C. Li, J.P. Chu, J.C. Huang, “Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating”, Intermetallics, Vol.31, pp.127-131, 2012.
39. H.S. Kim, H. Kato, A. Inoue, H.S. Chen, “Finite element analysis of compressive deformation of bulk metallic glasses”, Acta Mater, Vol.52, pp.3813-3823, 2004.
40. M. Cheng, S.H. Zhang, J.A. Wert, “Finite element analysis of microimprinting of bulk metallic glasses in supercooled liquid regime”, J. Mater. Sci, Vol.42, pp.5999-6003, 2007.
41. D. Henann, L. Anand, “A constitutive theory for the mechanical response of amorphous metals at high temperatures spanning the glass transition temperature: Application to microscale thermoplastic forming”, Acta Mater, Vol.56, pp.3290-3305, 2008.
42. D. Henann, V. Srivastava, H.K. Taylor, M.R. Hale, D.E. Hardt, L. Anand, “Metallic glasses: viable tool materials for the production of surface microstructures in amorphous polymers by microhot-embossing”, J.Micromech.Microeng, Vol.19, 115030, 2009.
43. D. Wanga, T. Shib, J. Panc, G. Liaoa, Z. Tangb, L. Liuc, “Finite element simulation and experimental investigation of forming micro-gear with Zr–Cu–Ni–Al bulk metallic glass”, Journal of Materials Processing Technology, Vol.210, pp.684-688, 2010.
44. H.G. Jeong, S.J. Yoo, W.J. Kim, “Micro-forming of Zr65Al10Ni10Cu15 metallic glasses under superplastic condition”, Journal of Alloys and Compounds, Vol.483, pp.283-285, 2009.
45. J.S.C. Jang, C.C. Tseng, L.J. Chang, C.F. Chang, W.J. Lee, J.C. Huang, C.T. Liu, “Glass forming ability and thermal properties of the Mg-based amorphous alloys with dual rare earth elements addition”, Materials transactions, Vol.48, pp.1684-1688, 2007.
46.韓占忠, 王敬, 蘭小平, “流體工程仿真計算實例與應用”, 北京理工大學出版社, No.4, 2007.

47.朱紅鈞, 林元華, 謝龍漢, “流體分析及仿真實用教程”, 人民郵電出版社”, No.1, 2010.
48.李進良, 李承曦, 胡仁喜, “精通流場分析”, No.1, 2010.
49.呂英嘉, “次微米級玻璃結構直接壓印成形之理論分析與實驗研究”,國立清華大學, 2008.
50. C.W. Hirt, B.D. Nichols, “Volume of Fluid (VOF) method for the dynamics of free boundaries”, Journal of Computational Physics, Vol.39, 201-225, 1981.
51.魏妙珊,“三維海嘯湧潮對近岸結構物之影響”, 國立中央大學, 2009.
52.薛進德, “船用柴油機單一油孔噴油器模擬黏度對流場影響之研究”, 國立高雄海洋科技大學, 2008.
53. MFC-1030T, http://www.mindman.com.tw
54.鄭詔元, “熱壓轉印製程製備鎂基塊狀金屬玻璃模仁”, 國立台灣科技大學, 2011.
55.王志祐, “加熱輔助超音波奈米轉印技術”, 國立清華大學, 2008

無法下載圖示 全文公開日期 2019/01/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE