簡易檢索 / 詳目顯示

研究生: 吳青峰
Ching-Feng Wu
論文名稱: 基於深度學習之RC建築震後初步耐震能力評估
Deep Learning-based Post-earthquake Preliminary Seismic Evaluation of RC buildings
指導教授: 許丁友
Ting-Yu Hsu
口試委員: 邱聰智
Tsung-Chih Chiou
邱建國
Chien-Kuo Chiu
張家銘
Chia-Ming Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 143
中文關鍵詞: 鋼筋混凝土震後損傷耐震初步評估殘餘耐震能力區域卷積神經網路
外文關鍵詞: Reinforced concrete, Preliminary Seismic Evaluation Method, Residual seismic capacity, regional-based convolutional neural network, GoogLeNet
相關次數: 點閱:305下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在每次地震後,建築物的殘餘耐震能力是否仍足夠是民眾最為關心的。在目前國內震後評估中,欲瞭解建築物的殘餘強度,僅有以詳細評估經由側推分析等方式去估算建物的殘餘耐震能力,然而其成本龐大,因此開發一個較經濟性的評估方法推估其殘餘耐震能力,已成為近期地震工程研究的重要議題。本研究根據用現有的RC震損構件相關研究成果,對既有的初步評估方法提出構件的殘餘強度折減係數,應用於初步評估方法推估建築物震後殘餘耐震能力。近年來,電腦硬體設備的普及和進步,使得深度學習的應用大幅成長,其中卷積類神經網路的出現,使影像識別技術有了更多的發展性。過去已有研究透過卷積類神經網路萃取損傷構件的影像特徵,以無損傷、髮絲裂紋以及中至重度損壞的三種區分,或對構件表面剝落、裂縫和鋼筋裸露或挫曲之四種損傷特徵,然而其識別之損傷型式皆不易與構件的殘餘強度對應,或者其識別之損傷程度不易應用於殘餘耐震能力評估。本研究利用既有研究對受損構件各強度下所歸納的損傷特徵為依據,並與營建署目前分級制度對應,透過卷積類神經網路(GoogLeNet)和區域型卷積類神經網路(Faster R-CNN)進行訓練,以識別模型判斷其損傷程度並應用於建築物殘餘的耐震能力初步評估。最後將本研究提出的殘餘耐震能力初步評估法實際應用於國家地震工程研究中心震損資料庫之震損建物,探討此評估方法特性與識別誤差,了解本研究所提出方法之可行性。


    Most citizens care about whether the residual seismic capacity of the building is still sufficient after each earthquake. At present, the only way to estimate the residual strength of the building is through the detailed assessment of seismic performance by push over analysis. However, the cost is huge, hence developing a more economical assessment method has become an important topic in recent earthquake engineering research. Based on the research results of earthquake-damaged RC members, this study proposes the residual strength reduction factor and applies it to estimate the residual earthquake resistance of the building after the earthquake using existing preliminary assessment method. Recently, benefit from the progress of computer hardware, deep learning techniques improve substantially. The advent of the Convolution Neural Network (CNN) makes image recognition more feasible. Previous studies had already tried to classify damage levels or patterns of damaged members. However, it is not easy to use the classified results to evaluate the residual seismic capacity. In this study, the damage levels defined by the Construction and Planning Agency are employed and the residual strength factors of the damaged elements of different damage levels estimated based on these damage levels are proposed. And then, CNN (GoogLeNet) and Regional Convolutional Neural Network (Faster R-CNN) are trained to identify damage levels of the element photos taken during earthquake reconnaissance. Preliminary seismic evaluation of damaged RC buildings during several destructive earthquakes are performed to demonstrate the feasibility of the proposed approach, and results using the damage levels identified by the trained neural netorks are compared to the one identified by experts.

    摘要 III Abstract IV 致謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究架構與方法 4 第二章 文獻回顧 5 2.1 震後建築物耐震初步評估方法 5 2.2 震損構件分級 7 2.2.1 日本損傷程度等級 7 2.2.2 國內損傷程度等級 9 2.3 營建署損傷級別對應構件強度 11 2.4 構件殘餘耐震性能折減 16 2.4.1 柱構件折減 16 2.4.2 RC牆構件折減 16 2.4.3 磚牆構件折減 17 2.5 深度學習應用於識別構件損傷 20 2.6 機器學習應用於智慧型手機 23 第三章 震損建築物初步評估方法 25 3.1 既有建築物耐震初步評估方法 25 3.2 損傷構件殘餘耐震能力折減係數 32 3.2.1 柱構件 33 3.2.2 RC牆構件 37 3.2.3 磚牆構件 41 3.3 殘餘耐震性能初步評估方法 44 第四章 垂直構件損傷程度類神經網路識別模型 47 4.1 卷積神經網路 47 4.2 目標偵測網路 53 4.3 遷移式學習 60 4.4 評估指標 60 4.5 實驗硬體配置與資料來源 62 4.6 識別損傷程度之類神經網路與架構 64 4.7 輸入影像處理方式 68 4.8 模型訓練與結果 74 4.8.1 輸入影像來源與選用 74 4.8.2 訓練模型參數 75 4.8.3 模型驗證 77 4.8.4 模型應用比較 89 第五章 案例分析與探討 92 5.1 實際震損建築物分析結果 93 5.1.1 案例結果探討 93 5.1.2 案例探討 96 5.1.3 小結 99 5.2 影像識別應用分析結果 101 5.2.1 裁切影像預測應用 101 5.2.2 原始未裁切影像預測應用 105 5.2.3 小結 108 5.2.4 預測模型應用討論 109 第六章 結論與未來展望 115 6.1 結論 115 6.2 建議 116 6.3 未來展望 116 參考文獻 118 附錄 122

    1.內政部營建署, 「災害後危險建築物緊急評估辦法」. 2009.
    2.日本建築防災協会, 震災建築物の被災度区分判定基準及び復旧技術指針. 2001.
    3.Chiu, Chien-Kuo, Hsin-Fang Sung, and Tsung-Chih Chiou, Quantification of the reduction factors of seismic capacity for damaged RC column members using the experiment database. Earthquake Engineering & Structural Dynamics, 2021. 50(3): p. 756-776.
    4.姚亭君, 「界面滑移對於震損RC填充牆耐震容量之影響」. 國立臺灣科技大學營建工程學系,碩士論文,台北, 2021.
    5.Rou-Ling Yeh, Chien-Chuang Tseng and Hwang Shyh-Jiann, Shear Strength of Reinforced Concrete Vertical Wall Segments under Seismic Loading. ACI Structural Journal. 115(5).
    6.Chiou, Tc and Shyh‐Jiann Hwang, Tests on cyclic behavior of reinforced concrete frames with brick infill. Earthquake Engineering & Structural Dynamics, 2015. 44.
    7.Chiou, T. C., C. T. Huang, and L. L. Chung, Verification on Seismic Assessment Models of Brick Infill by Tests of RC Frame With Brick infill. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 2017. 29: p. 257-268.
    8.Ahmed, F. Hassan and A. Sozen Mete, Seismic Vulnerability Assessment of Low-Rise Buildings in Regions with Infrequent Earthquakes. ACI Structural Journal. 94(1).
    9.Maeda, Masaki and Dae Eon Kang, Post-Earthquake Damage Evaluation of Reinforced Concrete Buildings. Journal of Advanced Concrete Technology, 2009. 7(3): p. 327-335.
    10.Chiou, T.-C., Hwang, S.-J., Chung, L.-L., Tu, Y.-S., Shen, W.-C. and Weng, P.-W., Preliminary Seismic Assessment of Low-Rise Reinforced Concrete Buildings in Taiwan. 16th World Conference on Earthquake Engineering, 16WCEE 2017, Santiago, Chile, Paper No. 2977, 2017.
    11.宋嘉誠, 邱聰智, 黃世建,, 臺灣中小學校舍結構耐震安全柱量比之研究. 國家地震工程研究中心,NCREE-13-031, 2013.
    12.林昱衡、邱聰智、黃世建, 鋼筋混凝土住宅建築之耐震能力初步評估法. 中華民國第14屆結構工程及第4屆地震工程研討會 The Fourteenth National Conference on Structural Engineering/ The Fourth National Conference on Earthquake Engineering Taichung, Taiwan, 6-8 November, 2018 Paper No.13013.
    13.陳建忠、葉勇凱、翁樸文、邱聰智、沈文成., 震災後危險建築物緊急評估技術及制度之修訂研究. 內政部建築研究所協同報告, 2014.
    14.ASCE/SEI-41, Seismic rehabilitation of existing buildings supplement no. 1. American Society of Civil Engineers: Reston.
    15.Chuang, Ming-Chieh, Edward Liao, Vicki Pei Lai, Yi-Jer Yu, and Keh-Chyuan Tsai, Development of PISA4SB for Applications in the Taiwan School Building Seismic Retrofit Program. Procedia Engineering, 2011. 14: p. 965-973.
    16.ASCE/SEI41-13, seismic evaluation and retrofi t of existing buildings. American Society of Civil Engineers, 2013.
    17.Yamaguchi, Tomoyuki and Shuji Hashimoto, Fast crack detection method for large-size concrete surface images using percolation-based image processing. Machine Vision and Applications, 2010. 21(5): p. 797-809.
    18.Shan, Baohua, Shijie Zheng, and Jinping Ou, A stereovision-based crack width detection approach for concrete surface assessment. KSCE Journal of Civil Engineering, 2016. 20(2): p. 803-812.
    19.Yang, Yuan-Sen, Chung-Ming Yang, and Chang-Wei Huang, Thin crack observation in a reinforced concrete bridge pier test using image processing and analysis. Advances in Engineering Software, 2015. 83.
    20.German, Stephanie, Ioannis Brilakis, and Reginald DesRoches, Rapid entropy-based detection and properties measurement of concrete spalling with machine vision for post-earthquake safety assessments. Advanced Engineering Informatics, 2012. 26(4): p. 846-858.
    21.Gao, Yuqing and Khalid M. Mosalam, Deep Transfer Learning for Image-Based Structural Damage Recognition. Computer-Aided Civil and Infrastructure Engineering, 2018. 33(9): p. 748-768.
    22.Cha, Young-Jin, Wooram Choi, Gahyun Suh, Sadegh Mahmoudkhani, and Oral Buyukozturk, Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types. Computer-Aided Civil and Infrastructure Engineering, 2017. 00: p. 1-17.
    23.Hoskere V, Narazaki Y, Hoang T, Spencer Jr B., Vision-based structural inspection using multiscale deep convolutional neural networks. arXiv preprint arXiv:1805.01055, 2018.
    24.Ghosh Mondal, Tarutal, Mohammad R. Jahanshahi, Rih-Teng Wu, and Zheng Yi Wu, Deep learning-based multi-class damage detection for autonomous post-disaster reconnaissance. Structural Control and Health Monitoring, 2020. 27(4).
    25.Wang, Niannian, Xuefeng Zhao, Peng Zhao, Yang Zhang, Zheng Zou, and Jinping Ou, Automatic damage detection of historic masonry buildings based on mobile deep learning. Automation in Construction, 2019. 103: p. 53-66.
    26.Perez, Husein and Joseph H. M. Tah, Deep learning smartphone application for real-time detection of defects in buildings. Structural Control and Health Monitoring, 2021. n/a(n/a): p. e2751.
    27.內政部營建署, 建築物耐震設計規範與解說. 內政部, 2011.
    28.邱聰智、翁樸文、沈文成、葉勇凱、鍾立來、黃世建, 「 台灣典型街屋建築結構資料庫」. 國家地震工程研究中心,研究報告 No.NCREE-14-006, 台北(2014).
    29.Chiou, T. C., Hwang, S. J., Chung, L. L., Tu, Y. S., Shen, W. C., and Weng, P. W., “Preliminary Seismic Assessment of Low-Rise Reinforced Concrete Buildings in Taiwan”. 16WCEE 2017, Santiago, Chile, Paper No. 2977 2017.
    30.邱聰智、何郁姍、沈文成、盧亦羽, 「0206 花蓮地震震損建物資料分析與探討」. 中華民國第14屆結構工程及第4屆地震工程研討會The Fourteenth National Conference on Structural Engineering/ The Fourth National Conference on Earthquake Engineering Taichung, Taiwan, 6-8 November, 2018 Paper No. 24007.
    31.國家地震工程研究中心、普渡大學, 「20160206美濃地震震損建物資料庫」. https://www.ncree.org/recce/20160206/,臺北, 2018.
    32.邱聰智、何郁姍、翁樸文、沈文成, 「20180206花蓮地震震損建物資料庫」. https://www.ncree.org/recce/20180206/,臺北, 2018.
    33.普渡大學, Digital Environment for Enabling Data-Driven Science. https://datacenterhub.org/.
    34.Werbos, Paul and Paul John, Beyond regression : new tools for prediction and analysis in the behavioral sciences. 1974.
    35.Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov, Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 2014. 15: p. 1929-1958.
    36.Christian Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed S., Anguelov, D., Erhan1, D., Vanhoucke V. and Rabinovich, A., Going Deeper with Convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1-9. 2015.
    37.Girshick, R., J. Donahue, T. Darrell, and J. Malik. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. in 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014.
    38.Uijlings, Jasper, K. Sande, T. Gevers, and A. W. M. Smeulders, Selective Search for Object Recognition. International Journal of Computer Vision, 2013. 104: p. 154-171.
    39.Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun, Faster R-CNN: towards real-time object detection with region proposal networks, in Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1. 2015, MIT Press: Montreal, Canada. p. 91–99.
    40.Lin, Tsung-Yi, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie, Feature Pyramid Networks for Object Detection. 2017. 936-944.
    41.He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual Learning for Image Recognition. 2016. 770-778.
    42.He, K., G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. in 2017 IEEE International Conference on Computer Vision (ICCV). 2017.
    43.Pan, S. J., Yang, Q, A survey on transfer learning. IEEE Transactions on knowledge and data engineering. 22(10), pp. 1345-1359., 2010.
    44.Github.Available, https://github.com/wkentaro/labelme.
    45.Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common Objects in Context. in Computer Vision – ECCV 2014. 2014. Cham: Springer International Publishing.
    46.蘇耕立, 台灣中小學校舍結構耐震能力初步評估方法之探討. 國立臺灣大學土木工程學系碩士論文, 2008.

    無法下載圖示 全文公開日期 2024/08/30 (校內網路)
    全文公開日期 2026/08/30 (校外網路)
    全文公開日期 2026/08/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE