簡易檢索 / 詳目顯示

研究生: Rifqi Jatnika
Rifqi - Jatnika
論文名稱: 一階段合成銀複合介孔生物活性玻璃 之生物活性與抗菌性探討之研究
Bioactivity and Antibacterial Properties of One-step Synthesized Silver Doped Mesoporous Bioactive Glass
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 楊永欽
Yung-Chin Yang
梁元彰
Yuan-Chang Liang
王聖璋
Sheng-Chang Wang
吳昌謀
Chang-Mou Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 105
中文關鍵詞: 介孔生物活性玻璃噴霧熱裂解抗菌生物活性
外文關鍵詞: Spray pyrolysis, Bioactivity, Antibacterial, Silver, Mesoporous bioactive glass
相關次數: 點閱:477下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

自1971年起,由於生物活性玻璃(Bioactive glass, BG)的生物活性與其廣泛的潛在應用,例如骨值體、牙齒填充物、藥物載體,因而吸引了廣大的注目。BG會在其表面形成氫氧基磷灰石(Hydroxy apatite, HA)層,當被植入人體時,將與組織產生強力的化學鍵結。為了增加HA的形成,合成介孔生物活性玻璃(Mesoporous bioactive glass, MBG )以增加表面積為最常使用的方法之一。在骨值體內生長的細菌可能導致感染,但可藉由添加抗菌劑來克服,例如銀(Silver, Ag)。合成銀摻雜的MBG之製程中,溶膠凝膠法為最受歡迎的製程,然而此製程有不連續、時間過長、不適合大量生產的缺點。為了克服這些缺點,選擇使用噴霧熱裂解(Spray pyrolysis, SP)作為合成銀摻雜的MBG之替代製程。本研究成功利用SP與前驅物矽酸乙酯(Tetraethyl orthosilicate, TEOS)、四水硝酸鈣(Calcium nitrate tetrahydrate)、磷酸三乙酯(triethyl phosphate, TEP)、醋酸銀(silver acetate, AgA)、醋酸銀(silver nitrate, AgN)成功合成銀摻雜的MBG。利用XRD、SEM、TEM、氮氣吸脫附法(BET)分析粒子特性,並藉由冷凍切片分析粒子剖面的元素分布,使用ICP分析銀摻雜的MBG之溶解散佈剖面圖。藉由將粒子浸泡在人體模擬體液中幾小時以分析試管中的生物活性,再以XRD分析其特性。使用抗菌圈進行抗菌測試。銀摻雜的MBG有良好的生物活性且達成抗菌效果,也得到銀的分布與粒子的形成機制。


Bioactive glass (BG) has attracted the attention of researchers for the last 50 years since it firstly reported at 1971 because of the bioactivity properties, and wide potential applications such as bone implants, tooth filling materials, and drug carriers. Bioactive glass forms hydroxyapatite (HA) layers on the surface of the BG that will generate strong chemical bond with tissue when it is implanted in a human body. To increase the HA formation, one of the popular approaches is to increase the surface area of BG by synthesize mesoporous bioactive glass (MBG). One of the applications of Mesoporous bioactive glasses are as bone implants that face a major problem with bacterial infections. The growth of bacteria in the bone implant that could lead to infection could be overcome by doped MBG by antibacterial agent such as silver (Ag). Sol-gel method is the most popular procedure to synthesize Ag-doped MBG; however, this method has some drawbacks of discontinuous processing, long processing time and unsuitable for mass production. To overcome these drawbacks, spray pyrolysis (SP) is an alternative procedure to synthesize Ag-doped MBG. In this study, Ag-doped MBG was successfully synthesized by using SP with tetraethyl orthosilicate, calcium nitrate tetrahydrate, triethyl phosphate, silver acetate and silver nitrate as the Ag-doped MBG precursors. The MBG particles will be characterized by using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherm for their crystallography structures, surface morphologies, and specific surface areas. Particles chemical element distributions were analyzed by using X-ray energy dispersive analysis and the dissolution profile of Ag-doped MBG is characterized using inductive coupled plasma for chemical analysis. The invitro bioactivity properties was analyzed by immersing the particles into simulated body fluid for certain hours and characterized by X-ray diffraction. Antibacterial property tests were conducted by using zone of inhibition method. Ag-doped MBG that with superior bioactivity and antibacterial properties were achieved by using the SP process, and silver distributions and particle formation mechanisms were also discussed.

Table of Contents Abstract 摘要 Acknowledgment Table of Contents Table of Figures List of Tables Chapter 1 Introduction Chapter 2 Literature Review 2.1 Bioceramics 2.2 Bioactive materials 2.2.1 Introduction 2.2.2 Classification of Bioactive material 2.2.3 Type of bioactive materials 2.3 Bioactive Glass 2.3.1 How to Control Bioactivity 2.3.2 Composition of bioactive glass 2.3.3 Synthesis of Bioactive Glass 2.3.4 Mechanism of bioactive glass bonding 2.4 Bioactivity Analysis Method 2.5 Spray Pyrolysis 2.5.1 Spray Pyrolysis Equipment 2.5.2 Electrostatic deposition 2.5.3 Particles Forming Mechanism 2.6 Silver-Doped Mesoporous Bioactive Glass 2.6.1 Synthesis of Silver-Doped Mesoporous Bioactive Glass 2.6.2 Antibacterial Mechanism of Silver Chapter 3 Experimental Procedure 3.1 Synthesis 3.2 Experimental Materials 3.3 Experimental Instrument 3.4 Characterization 3.4.1 X-ray Diffraction 3.4.2 Scanning electron microscope 3.4.3 Transmission electron microscope 3.4.4 Nitrogen adsorption / desorption isotherm 3.4.5 Inductive coupled plasma 3.4.6 In-vitro bioactive test 3.4.7 Antibacterial Test Chapter 4 Results and Discussion 4.1 Crystallographic Structure 4.2 Field emission-scanning electron microscopy 4.3 Transmission Electron Microscopy 4.4 Energy dispersive X-ray spectroscopy 4.5 Chemical Composition 4.6 Nitrogen adsorption / desorption analysis 4.7 Formation Mechanism 4.8 Inductive coupled plasma 4.9 Invitro bioactive test 4.10 Antibacterial test Chapter 5 Conclusions Chapter 6 Future Works References

References
[1] L.L. Hench, Bioceramics: From concept to clinic, Journal of the American Ceramic Society 74 (7) (1991) 1487-1510.
[2] L.H. Larry, Chronology of bioactive glass development and clinical applications, New Journal of Glass and Ceramics 03 (02) (2013) 67-73.
[3] M. Bohner, J. Lemaitre, Can bioactivity be tested in vitro with sbf solution?, Biomaterials 30 (12) (2009) 2175-2179.
[4] L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of Biomedical Materials Research 5 (6) (1971) 117-141.
[5] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic a-w3, Journal of Biomedical Materials Research 24 (6) (1990) 721-734.
[6] T.K. Greenlee, C.A. Beckham, A.R. Crebo, J.C. Malmorg, Glass ceramic bone implants. A light microscopic study, Journal of Biomedical Materials Research 6 (3) (1972) 235-244.
[7] U. Gross, V. Strunz, The interface of various glasses and glass ceramics with a bony implantation bed, Journal of Biomedical Materials Research 19 (3) (1985) 251-271.
[8] W. Cao, L.L. Hench, Bioactive materials, Ceramics International 22 (6) (1996) 493-507.
[9] L.L. Hench, Bioceramics, Journal of the American Ceramic Society 81 (7) (1998) 1705-1728.
[10] L.L. Hench, Bioactive materials: The potential for tissue regeneration, Journal of Biomedical Materials Research 41 (4) (1998) 511-518.
[11] L. Hench, The story of bioglassR, Journal of Materials Science: Materials in Medicine 17 (11) (2006) 967-978.
[12] T. Albrektsson, C. Johansson, Osteoinduction, osteoconduction and osseointegration, European Spine Journal 10 (2) (2001) S96-S101.
[13] H. Oonishi, L.L. Hench, J. Wilson, F. Sugihara, E. Tsuji, M. Matsuura, S. Kin, T. Yamamoto, S. Mizokawa, Quantitative comparison of bone growth behavior in granules of bioglassR, a-w glass-ceramic, and hydroxyapatite, Journal of Biomedical Materials Research 51 (1) (2000) 37-46.
[14] J. Wilson, S.B. Low, Bioactive ceramics for periodontal treatment: Comparative studies in the patus monkey, Journal of Applied Biomaterials 3 (2) (1992) 123-129.
[15] T. Kokubo, S. Ito, S. Sakka, T. Yamamuro, Formation of a high-strength bioactive glass-ceramic in the system mgo-cao-sio2-p2o5, Journal of Materials Science 21 (2) (1986) 536-540.
[16] S.-H. Rhee, J. Tanaka, Hydroxyapatite coating on a collagen membrane by a biomimetic method, Journal of the American Ceramic Society 81 (11) (1998) 3029-3031.
[17] R.R. Rao, H.N. Roopa, T.S. Kannan, Solid state synthesis and thermal stability of hap and hap – β-tcp composite ceramic powders, Journal of Materials Science: Materials in Medicine 8 (8) (1997) 511-518.
[18] H.S. Liu, T.S. Chin, L.S. Lai, S.Y. Chiu, K.H. Chung, C.S. Chang, M.T. Lui, Hydroxyapatite synthesized by a simplified hydrothermal method, Ceramics International 23 (1) (1997) 19-25.
[19] P. Layrolle, A. Ito, T. Tateishi, Sol-gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics, Journal of the American Ceramic Society 81 (6) (1998) 1421-1428.
[20] D.-M. Liu, T. Troczynski, W.J. Tseng, Water-based sol–gel synthesis of hydroxyapatite: Process development, Biomaterials 22 (13) (2001) 1721-1730.
[21] G. Bezzi, G. Celotti, E. Landi, T.M.G. La Torretta, I. Sopyan, A. Tampieri, A novel sol–gel technique for hydroxyapatite preparation, Materials Chemistry and Physics 78 (3) (2003) 816-824.
[22] R. Li, A.E. Clark, L.L. Hench, An investigation of bioactive glass powders by sol-gel processing, Journal of Applied Biomaterials 2 (4) (1991) 231-239.
[23] S.-J. Shih, Y.-J. Chou, I.C. Chien, One-step synthesis of bioactive glass by spray pyrolysis, Journal of Nanoparticle Research 14 (12) (2012) 1-8.
[24] L. Hench, Bioactive ceramics: Theory and clinical applications, Bioceramics 7 (1994) 3-14.
[25] W. Xia, J. Chang, Well-ordered mesoporous bioactive glasses (mbg): A promising bioactive drug delivery system, Journal of Controlled Release 110 (3) (2006) 522-530.
[26] W. Xia, J. Chang, Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58s bioactive glass, Journal of Non-Crystalline Solids 354 (12–13) (2008) 1338-1341.
[27] P. Ducheyne, L.L. Hench, A. Kagan, M. Martens, A. Bursens, J.C. Mulier, Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants, Journal of Biomedical Materials Research 14 (3) (1980) 225-237.
[28] J. Wilson, G.H. Pigott, F.J. Schoen, L.L. Hench, Toxicology and biocompatibility of bioglasses, Journal of Biomedical Materials Research 15 (6) (1981) 805-817.
[29] E.M. Carlisle, Silicon: A possible factor in bone calcification, Science (New York, N.Y.) 167 (3916) (1970) 279-280.
[30] E. Carlisle, Silicon: A requirement in bone formation independent of vitamin d1, Calcified Tissue International 33 (1) (1981) 27-34.
[31] J.J.M. Damen, J.M. Ten Cate, Silica-induced precipitation of calcium phosphate in the presence of inhibitors of hydroxyapatite formation, Journal of Dental Research 71 (3) (1992) 453-457.
[32] S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, Y. Toyama, T. Taguchi, J. Tanaka, The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3d culture, Biomaterials 26 (23) (2005) 4847-4855.
[33] P.J. Marie, The calcium-sensing receptor in bone cells: A potential therapeutic target in osteoporosis, Bone 46 (3) (2010) 571-576.
[34] P. Valerio, M. Pereira, A. Goes, M.F. Leite, Effects of extracellular calcium concentration on the glutamate release by bioactive glass (bg60s) preincubated osteoblasts, Biomedical Materials 4 (4) (2009) 045011.
[35] M. Julien, S. Khoshniat, A. Lacreusette, M. Gatius, A. Bozec, E.F. Wagner, Y. Wittrant, M. Masson, P. Weiss, L. Beck, D. Magne, J. Guicheux, Phosphate-dependent regulation of mgp in osteoblasts: Role of erk1/2 and fra-1, Journal of Bone and Mineral Research 24 (11) (2009) 1856-1868.
[36] M. Yamaguchi, Role of zinc in bone formation and bone resorption, The Journal of Trace Elements in Experimental Medicine 11 (2-3) (1998) 119-135.
[37] H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, M. Shakibaei, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants, Journal of Biomedical Materials Research 62 (2) (2002) 175-184.
[38] Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu, T. Uchida, T. Kubo, Y. Akagawa, Y. Hamada, J. Takahashi, N. Matsuura, Synthesis of functionally graded mgco3 apatite accelerating osteoblast adhesion, Journal of Biomedical Materials Research 62 (1) (2002) 99-105.
[39] T. Uysal, A. Ustdal, M.F. Sonmez, F. Ozturk, Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits, The Angle Orthodontist 79 (5) (2009) 984-990.
[40] R. Jugdaohsingh, K.L. Tucker, N. Qiao, L.A. Cupples, D.P. Kiel, J.J. Powell, Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the framingham offspring cohort, Journal of Bone and Mineral Research 19 (2) (2004) 297-307.
[41] S.-J. Shih, Y.-J. Chou, L.V.P. Panjaitan, Synthesis and characterization of spray pyrolyzed mesoporous bioactive glass, Ceramics International (0).
[42] M.N. Rahaman, D.E. Day, B. Sonny Bal, Q. Fu, S.B. Jung, L.F. Bonewald, A.P. Tomsia, Bioactive glass in tissue engineering, Acta Biomaterialia 7 (6) (2011) 2355-2373.
[43] L.L. Hench, I. Thompson, Twenty-first century challenges for biomaterials, Journal of The Royal Society Interface 7 (Suppl 4) (2010) S379-S391.
[44] B.O. Fowler, Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution, Inorganic Chemistry 13 (1) (1974) 194-207.
[45] R.A. Martin, H. Twyman, D. Qiu, J.C. Knowles, R.J. Newport, A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched bioglassR using surface sensitive shallow angle x-ray diffraction, Journal of Materials Science: Materials in Medicine 20 (4) (2009) 883-888.
[46] J. Jones, L. Ehrenfried, P. Saravanapavan, L. Hench, Controlling ion release from bioactive glass foam scaffolds with antibacterial properties, Journal of Materials Science: Materials in Medicine 17 (11) (2006) 989-996.
[47] H.F. Kraemer, H.F. Johnstone, Collection of aerosol particles in presence of electrostatic fields, Industrial & Engineering Chemistry 47 (12) (1955) 2426-2434.
[48] K. Okuyama, Preparation of micro-controlled particles usingaerosol process, Journal of Aerosol Science 22, Supplement 1 (0) (1991) S7-S10.
[49] S.J. Shih, Y.-Y. Wu, C.-Y. Chen, C.-Y. Yu, Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis, Journal of Nanoparticle Research 14 (5) (2012) 1-9.
[50] M. Bellantone, N.J. Coleman, L.L. Hench, Bacteriostatic action of a novel four-component bioactive glass, Journal of Biomedical Materials Research 51 (3) (2000) 484-490.
[51] A.M. El-Kady, A.F. Ali, R.A. Rizk, M.M. Ahmed, Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles, Ceramics International 38 (1) (2012) 177-188.
[52] M. Bellantone, H.D. Williams, L.L. Hench, Broad-spectrum bactericidal activity of ag2o-doped bioactive glass, Antimicrobial Agents and Chemotherapy 46 (6) (2002) 1940-1945.
[53] T.N. Kim, Q.L. Feng, J.O. Kim, J. Wu, H. Wang, G.C. Chen, F.Z. Cui, Antimicrobial effects of metal ions (ag+, cu2+, zn2+) in hydroxyapatite, Journal of Materials Science: Materials in Medicine 9 (3) (1998) 129-134.
[54] H. Lin, J. Zhang, F. Qu, J. Jiang, P. Jiang, In vitro hydroxyapatite-forming ability and antimicrobial properties of mesoporous bioactive glasses doped with ti/ag, Journal of Nanomaterials 2013 (2013) 8.
[55] M. Catauro, M.G. Raucci, F. de Gaetano, A. Marotta, Antibacterial and bioactive silver-containing na2o•cao•2sio2 glass prepared by sol–gel method, Journal of Materials Science: Materials in Medicine 15 (7) (2004) 831-837.
[56] H. Zhang, M. Wu, A. Sen, Silver nanoparticle antimicrobials and related materials, in: N. Cioffi, M. Rai (Eds.) Nano-antimicrobials, Springer Berlin Heidelberg, 2012, pp. 3-45.
[57] Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, A mechanistic study of the antibacterial effect of silver ions on escherichia coli and staphylococcus aureus, Journal of Biomedical Materials Research 52 (4) (2000) 662-668.
[58] R. Shrestha, D.R. Joshi, J. Gopali, S. Piya, Oligodynamic action of silver, copper and brass on enteric bacteria isolated from water of kathmandu valley, 2010.
[59] S.-J. Shih, I.C. Chien, Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis, Powder Technology 237 (0) (2013) 436-441.
[60] R. Li, D.J. Kim, K. Yu, H. Liang, C. Bai, S. Li, Study of fine silver powder from agoh slurry by hydrothermal techniques, Journal of Materials Processing Technology 137 (1–3) (2003) 55-59.
[61] G.L. Messing, S.-C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, Journal of the American Ceramic Society 76 (11) (1993) 2707-2726.
[62] S.-J. Shih, Y.-J. Chou, K. Borisenko, Preparation method: Structure–bioactivity correlation in mesoporous bioactive glass, Journal of Nanoparticle Research 15 (6) (2013) 1-9.
[63] S.-J. Shih, Y.-J. Chou, K. Borisenko, Preparation method: Structure–bioactivity correlation in mesoporous bioactive glass, Journal of Nanoparticle Research 15 (6) (2013) 1763.
[64] A. Seidell, Solubilities of inorganic and organic compounds; a compilation of quantitative solubility data from the periodical literature, D. Van Nostrand company, New York, 1919.

QR CODE