簡易檢索 / 詳目顯示

研究生: 林縉辰
CHIN-CHEN LIN
論文名稱: 利用平衡都市車流提升車載網路中封包可達性
Utilize the Balanced Urban Traffic to Improve the accessibility of the Packet in VANETs
指導教授: 陳省隆
Hsing-Lung Chen
口試委員: 呂政修
Jenq-Shiou Leu
吳乾彌
Chen-Mie Wu
陳郁堂
Yie-Tarng Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 60
中文關鍵詞: 車載網路車流平衡紅綠燈
外文關鍵詞: vanet, balance road traffic flows, traffic light
相關次數: 點閱:186下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步,無線網路在現今社會已普及化,在這同時使用車輛人數也增加很多,因此近年來,車載網路(VANETs)提供了許多種應用,如增加行車安全、降低道路擁塞和行車周邊服務等,這些都為車載網路衍伸出很多議題。當車輛有服務需求時,藉由廣播將其需求廣播給路側單元(Road Side Unit)並註冊。然而在城市中的道路會因為車輛的移動以及方向性,導致網路拓樸的改變,在進行廣播或接收封包時常會發生鏈結斷裂的情況。因此如何將封包的觸即率提升以及車輛與RSU能夠保持保持穩定的連線成為重要的議題之一。

    本研究提出一個利用平衡道路車流的方法來使道路車流量均勻分佈,並且使車輛有效的保持在傳輸範圍內。而我們提出平衡道路車流的方法透過NS2網路模擬器的實驗證明能有效的提升封包的觸及率,而藉由封包傳輸率(Packet Delivery Ratio)也能反映出車輛與RSU的穩定連線。


    As technology advances, wireless networks have become ubiquitous in today's society and the number of vehicles used at the same time has increased significantly. In recent years, therefore, VANETs have provided many applications such as increasing traffic safety and reducing road congestion And driving around the service, these are many issues for the car network derived. When the vehicle has a service request, it broadcasts its request to the Road Side Unit via radio and registers it. However, the road in the city will cause the change of the network topology due to the movement of the vehicle and the directionality, and often the link breaks when broadcasting or receiving the packet. Therefore, how to improve the contact rate of the packets and maintain a stable connection between the vehicle and the RSU becomes an important issue.
    This study proposes a method to balance the road traffic flow to make the road traffic flow evenly distributed and keep the vehicle effectively in the transmission range. The proposed method of balancing road traffic using the NS2 network simulator proves that the packet reachability can be effectively improved, and the Packet Delivery Ratio can reflect the stable
    connection between the vehicle and the RSU.

    內容 誌謝 1 摘要 2 ABSTRACT 3 Chapter 1 緒論 10 1.1 研究背景 10 1.2 研究動機 12 Chapter 2 相關研究 13 2.1 車載網路的架構 13 2.1.1 Vehicle to RSU(V2R) 13 2.1.2 Vehicle to Vehicle(V2V) 14 2.1.3 Vehicular Hybrid network architecture 14 2.2 相關廣播的方法 15 2.2.1 Flooding 15 2.2.2 DD 17 2.2.3 BBS 19 2.2.4 RRS 20 2.3 相關平衡道路車流 21 2.3.1 ATLS 21 2.3.2 RVDBVR 22 2.3.3 ATFA 24 2.4 指數分佈 25 Chapter 3 Balance Traffic Flows 28 3.1 環境說明 28 3.1.1 BTF的流程說明 29 3.2 車輛時間間隔方法 32 3.3 週期性紅綠燈設計 37 3.4 道路比例分配方法 39 Chapter 4 實驗環境與模擬結果 45 4.1 實驗環境 45 4.2 模擬結果與分析 48 4.2.1 道路車流量分析 48 4.2.1.1 紅綠燈週期88秒 49 4.2.1.2 紅綠燈週期100秒 51 4.2.1.3 紅綠燈週期44秒 53 4.2.2 封包的傳送分析 55 4.2.2.1 Average Reachability 56 4.2.2.2 Average Packet Delivery Ratio 57 Chapter 5 結論與未來展望 58 5.1 結論 58 5.2 未來展望 58 參考文獻 60 圖目錄 圖 2.2 1 Flooding 16 圖 2.2 2 Distance and delay 18 圖 2.3 1 紅綠燈四個階段轉換 21 圖 2.3 2 建立車輛密度高的路線 23 圖 2.4 1指數分佈(Exponential Distribution)機率密度函數 26 圖 2.4 2指數分佈(Exponential Distribution)累積分佈函數 26 圖 2.4 3波以松分佈(Poisson Distribution) 27 圖3.1 1實驗環境 29 圖 3.1 2流程圖 30 圖 3.2 1主要道路未加入限制條件匯入車流情形 32 圖 3.2 2一般道路未加入限制條件匯入車流情形 33 圖 3.2 3加入門檻值後主要道路匯入情形 35 圖 3.2 4 加入門檻值後一般道路匯入情形 36 圖 3.3 1同亮系統之紅綠燈週期示意圖 38 圖 3.4 1主要道路與主要道路 41 圖 3.4 2主要道路與一般道路 42 圖 3.4 3一般道路與一般道路 43 圖 4.1 1實驗環境 46 圖 4.2 1 紅綠燈週期88s之主要道路雙向分析 49 圖 4.2 2 紅綠燈週期88s之一般道路雙向分析 50 圖 4.2 3 紅綠燈週期100s之主要道路雙向分析 51 圖 4.2 4 紅綠燈週期100s之一般道路雙向分析 52 圖 4.2 5紅綠燈週期44s之主要道路雙向分析 53 圖 4.2 6 紅綠燈週期44s之一般道路雙向分析 54 圖 4.2 7 Average Reachability 56 圖 4.2 8 Average Packet Delivery Ratio 57 表目錄 表 3.4 1主要道路與主要道路比例分配計算 41 表 3.4 2主要道路與一般道路比例分配計算 42 表 3.4 3一般道路與一般道路比例分配計算 43 表 4.1 1參數設定 47

    [1] B. of Transportation Statistics, “National transporation statistics,” U.S. Department of Transporation, 2010.
    [2] Y. Toor, P. Muhelthaler, and A. Laouiti, “Vehicle Ad hoc networks : applications and related technical issues,” Journal of the Communications Surveys & Tutorials, IEEE, Third Quarter 2008, Vol. 10, No. 3, pp. 74-88."
    [3] Y. Ding and L. Xiao, "SADV: Static-Node-Assisted Adaptive Data Dissemination in Vehicular Networks," IEEE Transactions on Vehicular Technology, vol. 59, no. 5, pp. 2445-2455, 2010.
    [4] J. Bernsen and D. Manivannan, "Greedy Routing Protocols for Vehicular Ad Hoc Networks," in 2008 International Wireless Communications and Mobile Computing Conference, 2008, pp. 632-637.
    [5] M. U. Farooq, K. U. R. Khan, and S. Mohammed, "Selective flooding techniques for dissemination in VANETs," in 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), 2016, pp. 369-374.
    [6] H. Alshaer and E. Horlait, "An optimized adaptive broadcast scheme for inter-vehicle communication," in 2005 IEEE 61st Vehicular Technology Conference, 2005, vol. 5, pp. 2840-2844 Vol. 5.
    [7] H.-j. Hsieh, "Safety Broadcasting at intersections for VANETs," 2012.
    [8] C.-C. Yang, "A reliable routing scheme with restricted flooding in urban areas for VANETs," 2014.
    [9] L. Qi, M. Zhou, and W. Luan, "A Two-level Traffic Light Control Strategy for Preventing Incident-Based Urban Traffic Congestion," IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 1, pp. 13-24, 2018.
    [10] Y. Hyun, Y. Joon, and A. Sanghyun, "A VANET routing based on the real-time road vehicle density in the city environment," in 2013 Fifth International
    [11] I. Marsh, "VANET communication: A traffic flow approach," in 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC), 2012, pp. 1043-1048.
    [12] Mobility model generator for VEhicular networks – MOVE- http://lensl.csie.ncku.edu.tw/Joomla_version/index.php/research-projects/past/18-rapid-vanet.
    [13] Simulation of Urban Mobility – SUMOhttp://sumo.sourceforge.net.
    [14] The Network Simulator – ns-2 http://www.isi.edu/nsnam/ns.

    QR CODE