簡易檢索 / 詳目顯示

研究生: Bagus Purnawira
Bagus Purnawira
論文名稱: 以噴霧乾燥法製備未處理及甲酸處理β-三鈣磷酸鹽粉末性質鑑定之研究
Synthesis and characterization of un-treated and formic acid-treated β-TCP particles by spray drying
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Chen-Hao Wang
周育任
Yu-Jen Chou
林穎志
Ying-Chih Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 122
中文關鍵詞: β-三鈣磷酸鹽噴霧乾燥法甲酸處理形貌鍛燒骨移植應用
外文關鍵詞: β-TCP, spray drying, formic acid-treated, morphology, calcination, bone graft applications
相關次數: 點閱:287下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

球形 β三鈣磷酸鹽顆粒可提高對於3D列印骨移植支架的品質。為了達到大量生產、球形形態和高產率的β-三鈣磷酸鹽,本研究選擇以噴霧乾燥技術來製備 β-三鈣磷酸鹽顆粒。
在本研究以兩種不同的方式製備β-三鈣磷酸鹽顆粒,分別為未處理以及經過甲酸處理的前驅液,噴霧乾燥法成功合成未處理和甲酸處理的β-三鈣磷酸鹽顆粒,將合成的顆粒以不同溫度(800、900、1000和1100 ℃)進行煅燒,並分析其相組成、粉體形貌、化學組成以及比表面積。此外,以體外細胞毒性 (MTT) 和體外生物降解試驗用於評估作為骨移植應用的性能。實驗結果顯示,未處理的β-三鈣磷酸鹽 顆粒有較低純度相組成、片狀顆粒形貌且含有毒性。而經過甲酸處理的 β-三鈣磷酸鹽 顆粒具有高純度相組成、實心且光滑的球形顆粒、良好的生物降解性且無毒性。此外,經過甲酸處理的β-TCP顆粒在800 oC 煅燒後具更高的比表面積、高孔隙率、無毒性且較低的煅燒溫度為最本研究最佳的實驗條件。


Spherical β-TCP particles can help improve the quality of 3D printed bone graft scaffolds. In order to produce β-TCP for mass production, spherical morphology and high yield product, spray drying was chosen as a technique to prepare β-TCP particles.
β-TCP particles were prepared in two distinct ways, namely un-treated and formic acid-treated β-TCP particles. The spray drying method was successfully used to fabricate both untreated and formic acid-treated β-TCP particles. The synthesized particles were calcined at various temperatures (800, 900, 1000, and 1100 ℃). Characterizations of phase composition, morphology, chemical composition, and specific surface area were carried out. In addition, in vitro cytotoxicity (MTT) and biodegradability tests were used to evaluate performance as bone graft applications. The results showed that un-treated β-TCP have a low purity phase, flake-like morphology, and non-toxicity. However, formic acid-treated β-TCP has a high purity phase, solid spherical morphology, good biodegradability, and non-toxicity. Moreover, 800 oC calcined of formic acid-treated β-TCP particles were chosen as the most suitable candidate because it has a higher surface area, high porosity, non-toxicity, and lower calcination temperature.

摘要 I Abstract II Acknowledgments III List of Tables VII List of Figures IX Chapter 1. Introduction 1 1.1 Research background 1 1.2 Aim of work 3 Chapter 2. Literature review 4 2.1 Biomaterial 4 2.2 Ceramics 6 2.2.1 Ceramic as Bone Graft or Osteoconductive 9 2.3 Calcium phosphate 11 2.4 Tricalcium Phosphate (TCP) 14 2.5 Beta-Tricalcium Phosphate (β-TCP) 17 2.6 β-TCP preparation methods 18 2.6.1 Solid state reaction 19 2.6.2 Wet chemical precipitation 19 2.6.3 Sol-gel method 19 2.6.4 Solution combustion 20 2.6.5 Spray drying method 20 2.7 Spray drying 20 2.8 Effect acid on spray drying product 23 Chapter 3. Experimental procedure 25 3.1 Synthesis 25 3.1.1 Synthesis of Beta-Tricalcium Phosphate (β-TCP) 28 3.2 Experimental materials 29 3.3 Experimental instrument 29 3.4 Characterization of the material 31 3.4.1 X-ray diffractometer (XRD) 31 3.4.2 Field emission-scanning electron microscopy (FE-SEM) 31 3.4.3 Brunaeur Emmet Teller (BET) 31 3.4.4 FTIR test 32 3.4.5 In vitro cytotoxicity test 32 3.4.6 In vitro biodegradable test 33 Chapter 4. Results 35 4.1 Un-treated β-TCP powders 35 4.1.1 X-ray diffraction analysis 35 4.1.2 Fourier transform infrared spectroscopy 38 4.1.3 Scanning electron microscope analysis 40 4.1.4 Energy dispersive X-ray spectroscopy 44 4.1.5 Adsorption-desorption nitrogen analysis 47 4.1.6 In vitro Cytotoxicity (MTT assay) 50 4.2 Formic acid-treated β-TCP powders 61 4.2.1 X-ray diffraction analysis 61 4.2.2 Fourier transform infrared spectroscopy analysis 63 4.2.3 Scanning electron microscope analysis 65 4.2.4 Energy dispersive X-ray spectroscopy 69 4.2.5 Adsorption-desorption nitrogen analysis 72 4.2.6 In vitro Cytotoxicity (MTT assay) 75 4.2.7 In vitro biodegradable test 76 Chapter 5. Discussion 86 5.1 Formic acid effects 86 5.1.1 Phase compositions 86 5.1.2 Morphologies 88 5.2 Specific surface areas and particle sizes 90 5.3 In vitro cytotoxicity (MTT assay) 93 5.4 In vitro biodegradable test 94 Chapter 6. Conclusions 95 Chapter 7. Future works 96 References 97

[1] W.D. Callister, D.G. Rethwisch, Material Science And Engineering An Introduction 8th Edition, John Wiley & Sons, Inc, Hoboken, (2009).
[2] W.J.E.M. Habraken, J.G.C. Wolke, J.A. Jansen, Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering, Advanced Drug Delivery Reviews, 59 (2007) 234-248.
[3] J.E. Block, M.R. Thorn, Clinical Indications of Calcium-Phosphate Biomaterials and Related Composites for Orthopedic Procedures, Calcified Tissue International, 66 (2000) 234-238.
[4] S. Taksali, J.N. Grauer, A.R. Vaccaro, Material considerations for intervertebral disc replacement implants, The Spine Journal, 4 (2004) S231-S238.
[5] P. Heini, U. Berlemann, Bone substitutes in vertebroplasty, European Spine Journal, 10 (2001) S205-S213.
[6] H.B. Gladstone, M.W. McDermott, D.D. Cooke, Implants For Cranioplasty, Otolaryngologic Clinics of North America, 28 (1995) 381-400.
[7] A.M.H. Ng, K.K. Tan, M.Y. Phang, O. Aziyati, G.H. Tan, M.R. Isa, B.S. Aminuddin, M. Naseem, O. Fauziah, B.H.I. Ruszymah, Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone, Journal of Biomedical Materials Research Part A, 85A (2008) 301-312.
[8] Z. Zyman, K. Loza, Determination of the Ca/P ratio in calcium phosphates during the precipitation of hydroxyapatite using X-ray diffractometry, Processing and Application of Ceramics, 7 (2013) 93-95.
[9] A. Fatima, E. Mostafa, I. Mohamed, E.o. Bahia, J. Mohamed, M. Nawal, H. Zineb, TRICALCIUM PHOSPHATE POWDER: PREPARATION, CHARACTERIZATION AND COMPACTION ABILITIES, Mediterranean Journal of Chemistry, 6 (2017) 71-76.
[10] E. Salahi, J.G. Heinrich, Synthesis and thermal behaviour ofβtricalcium phosphate precipitated from aqueous solutions, British Ceramic Transactions, 102 (2013) 79-82.
[11] M. Bohner, B.L.G. Santoni, N. Dobelin, beta-tricalcium phosphate for bone substitution: Synthesis and properties, Acta Biomater, 113 (2020) 23-41.
[12] R. Ghosh, R. Sarkar, Synthesis and characterization of sintered beta-tricalcium phosphate: A comparative study on the effect of preparation route, Materials Science and Engineering: C, 67 (2016) 345-352.
[13] N. Jinlong, Z. Zhenxi, J. Dazong, Investigation of Phase Evolution During the Thermochemical Synthesis of Tricalcium Phosphate, Journal of Materials Synthesis and Processing, 9 (2001) 235-240.
[14] K.S. TenHuisen, P.W. Brown, Phase Evolution during the Formation of α-Tricalcium Phosphate, Journal of the American Ceramic Society, 82 (1999) 2813-2818.
[15] B. Zhao, G.y. Xing, Synthesis of beta-Tricalciumphosphate Powder through Aqueous Precipitation Method, 2009 2nd International Conference on Biomedical Engineering and Informatics, 2009, pp. 1-6.
[16] W.I. Abdel-Fattah, F.M. Reicha, T.A. Elkhooly, Nano-beta-tricalcium phosphates synthesis and biodegradation: 1. Effect of microwave and SO42− ions on β-TCP synthesis and its characterization, Biomedical Materials, 3 (2008) 034121.
[17] H.S. Ningsih, L. Tannesia, H.-H. Chen, S.-J. Shih, Fabrication, Characterization and In Vitro Cytotoxicity of Mesoporous β-Tricalcium Phosphate Using the Spray Drying Method, Crystals, 11 (2021).
[18] K. Masters, Spray Drying Handbook, Godwin1985.
[19] M. J.K., Spray drying and spray congealing of pharmaceuticals, In : Enclycopedia of pharmaceutical technology. Marcel Dekker INC, New York, 14 (1993) 207-221.
[20] M. Eslamian, N. Ashgriz, Effect of precursor, ambient pressure, and temperature on the morphology, crystallinity, and decomposition of powders prepared by spray pyrolysis and drying, Powder Technology, 167 (2006) 149-159.
[21] R.P. Patel, M.P. Patel, A.M. Suthar, Spray drying technology: an overview, Indian Journal of Science and Technology, 2 (2009).
[22] D. Santos, A. Maurício, V. Sencadas, J. Santos, M. Fernandes, P. Gomes, Spray Drying: An Overview, 2018.
[23] H.-M. Lee, C.-C. Cheng, C.-Y. Huang, The synthesis and optical property of solid-state-prepared YAG:Ce phosphor by a spray-drying method, Materials Research Bulletin, 44 (2009) 1081-1085.
[24] S.-J. Shih, L.P. Richardo, K.I. Sucipto, Z.-M. Wang, Preparation of Ce-doped yttrium aluminum garnet phosphor particles using spray drying method, Journal of Asian Ceramic Societies, (2020) 1-8.
[25] P. Luo, T.G. Nieh, Preparing hydroxyapatite powders with controlled morphology, Biomaterials, 17 (1996) 1959-1964.
[26] Y. Ben, L. Zhang, S. Wei, T. Zhou, Z. Li, H. Yang, Y. Wang, F.A. Selim, C. Wong, H. Chen, PVB modified spherical granules of β-TCP by spray drying for 3D ceramic printing, Journal of Alloys and Compounds, 721 (2017) 312-319.
[27] T. Kihara, Y. Zhang, Y. Hu, Q. Mao, Y. Tang, J. Miyake, Effect of composition, morphology and size of nanozeolite on its in vitro cytotoxicity, Journal of Bioscience and Bioengineering, 111 (2011) 725-730.
[28] Z. Xu, C. Liu, J. Wei, J. Sun, Effects of four types of hydroxyapatite nanoparticles with different nanocrystal morphologies and sizes on apoptosis in rat osteoblasts, Journal of Applied Toxicology, 32 (2012) 429-435.
[29] A. Grandjean-Laquerriere, P. Laquerriere, M. Guenounou, D. Laurent-Maquin, T.M. Phillips, Importance of the surface area ratio on cytokines production by human monocytes in vitro induced by various hydroxyapatite particles, Biomaterials, 26 (2005) 2361-2369.
[30] M. Tanahashi, K. Kamiya, T. Suzuki, H. Nasu, Fibrous hydroxyapatite grown in the gel system: effects of pH of the solution on the growth rate and morphology, Journal of Materials Science: Materials in Medicine, 3 (1992) 48-53.
[31] D.M. Liu, H.M. Chou, J.D. Wu, Plasma-sprayed hydroxyapatite coating: effect of different calcium phosphate ceramics, Journal of Materials Science: Materials in Medicine, 5 (1994) 147-153.
[32] A. International, Handbook of Materials for Medical Devices, 2003.
[33] D. Williams, Consensus and definitions in biomaterials, Advances in biomaterials, 8 (1980) 11-16.
[34] E. Wintermantel, S.-W. Ha, Medizintechnik mit biokompatiblen Werkstoffen und Verfahren, Springer2002.
[35] S. Bauer, P. Schmuki, K. von der Mark, J. Park, Engineering biocompatible implant surfaces: Part I: Materials and surfaces, Progress in Materials Science, 58 (2013) 261-326.
[36] A. Domanska, A. Boczkowska, Biodegradable polyurethanes from crystalline prepolymers, Polymer Degradation and Stability, 108 (2014) 175-181.
[37] D.R.H.J.a.M.F. Ashby, Engineering Materials 1. An Introduction to Their Properties and Applications, Butterworth Heinemann, Woburn, UK, 2005.
[38] C.J. Whitters, R. Strang, D. Brown, R.L. Clarke, R.V. Curtis, P.V. Hatton, A.J. Ireland, C.H. Lloyd, J.F. McCabe, J.W. Nicholson, S.N. Scrimgeour, J.C. Setcos, M. Sherriff, R. van Noort, D.C. Watts, D. Wood, Dental materials: 1997 literature review, Journal of Dentistry, 27 (1999) 401-435.
[39] E.M. Brach del Prever, L. Costa, C. Piconi, M. Baricco, A. Massè, Biomaterials for Total Joint Replacements, in: D.G. Poitout (Ed.) Biomechanics and Biomaterials in Orthopedics, Springer London, London, 2016, pp. 59-70.
[40] R. Dimitriou, E. Jones, D. McGonagle, P.V. Giannoudis, Bone regeneration: current concepts and future directions, BMC Medicine, 9 (2011) 66.
[41] T.W. Bauer, G.F. Muschler, Bone Graft Materials: An Overview of the Basic Science, Clinical Orthopaedics and Related Research®, 371 (2000).
[42] G. Data, MediPoint: Bone Grafts and Substitutes - Global Analysis and Market Forecasts, 2014.
[43] T. Kurien, R.G. Pearson, B.E. Scammell, Bone graft substitutes currently available in orthopaedic practice, The Bone & Joint Journal, 95-B (2013) 583-597.
[44] A.M.C. Barradas, H. Yuan, C.A. van Blitterswijk, P. Habibovic, Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms, Eur Cell Mater, 2011, pp. 407-429; discussion 429.
[45] F.H. Albee, Studies in bone growth: triple calcium phosphate as a stimulus to osteogenesis, Annals of surgery, 71 (1920) 32.
[46] H.L.L.S.R.J.A.W.C.a.G. T.K, Bonding Mechanism at the Interface of Ceramic Prosthetic Materials, Journal of Biomedical Materials Research, 2 (1971) 117-141.
[47] T. Driskell, C. Hassler, V. Tennery, L. McCoy, W. Clarke, CALCIUM PHOSPHATE RESORBABLE CERAMICS-POTENTIAL ALTERNATIVE TO BONE GRAFTING, Journal of Dental Research, SAGE PUBLICATIONS INC 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA, 1973, pp. 123-+.
[48] W. Hubbard, Physiological calcium phosphate as orthopedic implant material, Diss. Abstr. Int, 35 (1974) 1683B.
[49] C.P.A.T. Klein, J.M.A. de Blieck-Hogemrst, J.G.C. Wolket, K. de Groot, Studies of the solubility of different calcium phosphate ceramic particles in vitro, Biomaterials, 11 (1990) 509-512.
[50] R.Z. Legeros, Calcium Phosphate Materials in Restorative Dentistry: a Review, Advances in Dental Research, 2 (1988) 164-180.
[51] A.J. Ambard, L. Mueninghoff, Calcium Phosphate Cement: Review of Mechanical and Biological Properties, Journal of Prosthodontics, 15 (2006) 321-328.
[52] N. Kivrak, A.C. Taş, Synthesis of Calcium Hydroxyapatite-Tricalcium Phosphate (HA-TCP) Composite Bioceramic Powders and Their Sintering Behavior, Journal of the American Ceramic Society, 81 (1998) 2245-2252.
[53] I.R. Gibson, I. Rehman, S.M. Best, W. Bonfield*, Characterization of the transformation from calcium-deficient apatite to β-tricalcium phosphate, Journal of Materials Science: Materials in Medicine, 11 (2000) 799-804.
[54] J.S. Cho, Y.C. Kang, Nano-sized hydroxyapatite powders prepared by flame spray pyrolysis, Journal of Alloys and Compounds, 464 (2008) 282-287.
[55] K.R. Kang, Z.G. Piao, J.S. Kim, I.A. Cho, M.J. Yim, B.H. Kim, J.S. Oh, J.S. Son, C.S. Kim, D.K. Kim, S.Y. Lee, S.G. Kim, Synthesis and Characterization of beta-Tricalcium Phosphate Derived From Haliotis sp. Shells, Implant Dent, 26 (2017) 378-387.
[56] U. Gbureck, T. Hölzel, I. Biermann, J.E. Barralet, L.M. Grover, Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping, Journal of Materials Science: Materials in Medicine, 19 (2008) 1559-1563.
[57] L. Houda, H. Chaair, Synthesis of β-tricalcium phosphate, Morphologie, 101 (2016).
[58] R. França, T. Javanbakht, G. Bayade, Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics, Journal of Colloid and Interface Science, (2014).
[59] M. Yashima, A. Sakai, T. Kamiyama, A. Hoshikawa, Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction, Journal of Solid State Chemistry, 175 (2003) 272-277.
[60] C. Pontier, M. Viana, E. Champion, D. Chulia, Apatitic calcium phosphates used in compression: rationalization of the end-use properties, Powder Technology, 130 (2003) 436-441.
[61] A. Ślósarczyk, Z. Paszkiewicz, C. Paluszkiewicz, FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods, Journal of Molecular Structure, 744-747 (2005) 657-661.
[62] Y.-C. Huang, P.-C. Hsiao, H.-J. Chai, Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells, Ceramics International, 37 (2011) 1825-1831.
[63] T.K. Anee, M. Ashok, M. Palanichamy, S. Narayana Kalkura, A novel technique to synthesize hydroxyapatite at low temperature, Materials Chemistry and Physics, 80 (2003) 725-730.
[64] M. Tamai, R. Nakaoka, T. Tsuchiya, Cytotoxicity of Various Calcium Phosphate Ceramics, Key Engineering Materials, 309-311 (2006) 263-266.
[65] J. Huang, Design and Development of Ceramics and Glasses, (2017) 315-329.
[66] P.S. Eggli, W. Müller, R.K. Schenk, Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution, Clin Orthop Relat Res, (1988) 127-138.
[67] M. Bohner, J. Lemaitre, Can bioactivity be tested in vitro with SBF solution?, Biomaterials, 30 (2009) 2175-2179.
[68] N. Kondo, A. Ogose, K. Tokunaga, T. Ito, K. Arai, N. Kudo, H. Inoue, H. Irie, N. Endo, Bone formation and resorption of highly purified β-tricalcium phosphate in the rat femoral condyle, Biomaterials, 26 (2005) 5600-5608.
[69] H. Yuan, H. Fernandes, P. Habibovic, J. de Boer, A.M.C. Barradas, A. de Ruiter, W.R. Walsh, C.A. van Blitterswijk, J.D. de Bruijn, Osteoinductive ceramics as a synthetic alternative to autologous bone grafting, Proc Natl Acad Sci U S A, 107 (2010) 13614-13619.
[70] C. Shu, Y. Xianzhu, X. Zhangyin, X. Guohua, L. Hong, Y. Kangde, Synthesis and sintering of nanocrystalline hydroxyapatite powders by gelatin-based precipitation method, Ceramics International, 33 (2007) 193-196.
[71] S. Loher, W.J. Stark, M. Maciejewski, A. Baiker, S.E. Pratsinis, D. Reichardt, F. Maspero, F. Krumeich, D. Günther, Fluoro-apatite and Calcium Phosphate Nanoparticles by Flame Synthesis, Chemistry of Materials, 17 (2005) 36-42.
[72] M.A. Amin Muhammad Nor, M.M. Ridzuan, Z.A. Ahmad, Synthesis and characterization of beta-tricalcium phosphate ceramic via sol-gel method, (2009).
[73] K.P. Sanosh, M.-C. Chu, A. Balakrishnan, T.N. Kim, S.-J. Cho, Sol–gel synthesis of pure nano sized β-tricalcium phosphate crystalline powders, Current Applied Physics, 10 (2010) 68-71.
[74] Q. Feng, X.H. Ma, Q.Z. Yan, C.C. Ge, Preparation of soft-agglomerated nano-sized ceramic powders by sol–gel combustion process, Materials Science and Engineering: B, 162 (2009) 53-58.
[75] Z. Tian, L. Lin, F. Meng, W. Huang, Combustion synthesis and characterization of nanocrystalline Ba(Mg1/3Nb2/3)O3 powders, Materials Science and Engineering: B, 158 (2009) 88-91.
[76] A. Chinnaswamy, P. S, Spray Drying Techniques for Food Ingredient Encapsulation, 2015.
[77] S. Keshani, W.R.W. Daud, M.M. Nourouzi, F. Namvar, M. Ghasemi, Spray drying: An overview on wall deposition, process and modeling, Journal of Food Engineering, 146 (2015) 152-162.
[78] M.M. Barbooti, D.A. Al-Sammerrai, Thermal Decomposition of citric acid, Thermochimica Acta, 98 (1986) 8.
[79] G.D. Robertson, D.M. Mason, W.H. Corcoran, The Kinetics of the Thermal Decomposition of Nitric Acid in the Liquid Phase, The Journal of Physical Chemistry, 59 (1955) 683-690.
[80] T. Ida, M. Nishida, Y. Hori, Revisiting Formic Acid Decomposition by a Graph-Theoretical Approach, The Journal of Physical Chemistry A, 123 (2019) 9579-9586.
[81] M. Kubota, Decomposition of oxalic acid with nitric acid, Journal of Radioanalytical Chemistry, 75 (1982) 39-49.
[82] K. Matsunaga, T. Kubota, K. Toyoura, A. Nakamura, First-principles calculations of divalent substitution of Ca2+ in tricalcium phosphates, Acta Biomaterialia, 23 (2015) 329-337.
[83] X. Yin, M.J. Stott, A. Rubio, $\ensuremath{\alpha}$- and $\ensuremath{\beta}$-tricalcium phosphate: A density functional study, Physical Review B, 68 (2003) 205205.
[84] S. Raynaud, E. Champion, D. Bernache-Assollant, P. Thomas, Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders, Biomaterials, 23 (2002) 1065-1072.
[85] A.E. Jakus, A.L. Rutz, R.N. Shah, Advancing the field of 3D biomaterial printing, Biomedical Materials, 11 (2016) 014102.
[86] M. Fernández Cervera, J. Heinämäki, N. Paz, O. López Hernández, S. Maunu, T. Virtanen, T. Hatanpää, O. Antikainen, A. Nogueira, J. Fundora, J. Yliruusi, Effects of Spray Drying on Physicochemical Properties of Chitosan Acid Salts, AAPS PharmSciTech, 12 (2011) 637-649.
[87] W. Xia, K. Grandfield, A. Schwenke, H. Engqvist, Synthesis and release of trace elements from hollow and porous hydroxyapatite spheres, Nanotechnology, 22 (2011) 305610.
[88] R. Vehring, Pharmaceutical Particle Engineering via Spray Drying, Pharmaceutical Research, 25 (2008) 999-1022.
[89] S.J. Lukasiewicz, Spray-Drying Ceramic Powders, Journal of the American Ceramic Society, 72 (1989) 617-624.
[90] T. Safronova, A. Kuznetsov, S. Korneychuk, V. Putlyaev, M. Shekhirev, Calcium phosphate powders synthesized from solutions with [Ca2+]/[PO43−]=1 for bioresorbable ceramics, Open Chemistry, 7 (2009) 184-191.
[91] F.E. Bastan, G. Erdogan, T. Moskalewicz, F. Ustel, Spray drying of hydroxyapatite powders: The effect of spray drying parameters and heat treatment on the particle size and morphology, Journal of Alloys and Compounds, 724 (2017) 586-596.
[92] D.P. Pioletti, H. Takei, T. Lin, P. Van Landuyt, Q. Jun Ma, S. Yong Kwon, K.L. Paul Sung, The effects of calcium phosphate cement particles on osteoblast functions, Biomaterials, 21 (2000) 1103-1114.
[93] J. Huang, S.M. Best, W. Bonfield, R.A. Brooks, N. Rushton, S.N. Jayasinghe, M.J. Edirisinghe, In vitro assessment of the biological response to nano-sized hydroxyapatite, Journal of Materials Science: Materials in Medicine, 15 (2004) 441-445.
[94] L.C. Stoehr, E. Gonzalez, A. Stampfl, E. Casals, A. Duschl, V. Puntes, G.J. Oostingh, Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells, Particle and Fibre Toxicology, 8 (2011) 36.
[95] P. Narayan, D. Marchant, M.A. Wheatley, Optimization of spray drying by factorial design for production of hollow microspheres for ultrasound imaging, Journal of Biomedical Materials Research, 56 (2001) 333-341.
[96] K. Lin, W. Yuan, L. Wang, J. Lu, L. Chen, Z. Wang, J. Chang, Evaluation of host inflammatory responses of β-tricalcium phosphate bioceramics caused by calcium pyrophosphate impurity using a subcutaneous model, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 99B (2011) 350-358.
[97] H.A. Bhatt, S.J. Kalita, Influence of oxide-based sintering additives on densification and mechanical behavior of tricalcium phosphate (TCP), Journal of Materials Science: Materials in Medicine, 18 (2007) 883-893.
[98] M. Gallo, B. Le Gars Santoni, T. Douillard, F. Zhang, L. Gremillard, S. Dolder, W. Hofstetter, S. Meille, M. Bohner, J. Chevalier, S. Tadier, Effect of grain orientation and magnesium doping on β-tricalcium phosphate resorption behavior, Acta Biomaterialia, 89 (2019) 391-402.
[99] B. Arbez, F. Manero, G. Mabilleau, H. Libouban, D. Chappard, Human macrophages and osteoclasts resorb β-tricalcium phosphate in vitro but not mouse macrophages, Micron, 125 (2019) 102730.
[100] P. Stastny, R. Sedlacek, T. Suchy, V. Lukasova, M. Rampichova, M. Trunec, Structure degradation and strength changes of sintered calcium phosphate bone scaffolds with different phase structures during simulated biodegradation in vitro, Materials Science and Engineering: C, 100 (2019) 544-553.

無法下載圖示 全文公開日期 2024/08/01 (校內網路)
全文公開日期 2026/08/01 (校外網路)
全文公開日期 2026/08/01 (國家圖書館:臺灣博碩士論文系統)
QR CODE