簡易檢索 / 詳目顯示

研究生: 王景平
Ching-ping Wang
論文名稱: 超寬頻訊號傳播與天線效率量測研究
Studies of Ultra Wideband Signal Propagation and Antenna Efficiency Evaluation
指導教授: 廖文照
Wen-jiao Liao
口試委員: 馬自莊
Tzyh-ghuang Ma
楊成發
Chang-fa Yang
蕭宇廷
Yu-ting Hsiao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 89
中文關鍵詞: 超寬頻訊號傳播寬頻單極天線回聲實驗室天線效率
外文關鍵詞: ultra wideband signal propagation, broadband monopole antenna, reverberation chamber, antenna efficiency
相關次數: 點閱:383下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文首先研究超寬頻訊號在車輛內的傳播,特別是車輛引擎蓋下方的環境。由於汽車環境中含有很多複雜的金屬結構,傳統窄頻通訊的傳輸品質對於發射器與接收器所在位置可能相當敏感,本研究透過實際量測與使用高頻數值電磁軟體模擬工具,來檢測寬頻訊號與環境中障礙物互相影響的狀況。在量測上,利用超寬頻單極天線,以涵蓋2~6 GHz的頻率範圍。將兩支相同超寬頻單極天線放置在車輛引擎室與車內各個位置,並使用網路分析儀紀錄在一寬頻範圍(2~6 GHz)的掃頻傳輸大小與相位。透過傅立葉轉換,將頻譜轉換為時域結果,以檢視傳播環境的特徵。除了車輛實測,本研究亦建置控制下的金屬障礙物模型,經由調整傳播障礙物模型環境的設置,可以辨識出主要散射源的位置。最後,應用高頻數值模擬軟體,進一步分析環境中的傳播特性,並瞭解障礙物各項傳播機制之貢獻程度。
在另一方面,由於無線通訊中的手持式設備增加,微型天線需求變大。利用傳統之遠場與近場量測系統來量測小型天線效率,不是很方便、且昂貴費時。因此本論文利用回聲實驗室做天線效率評估,開發出兩版回聲實驗室。在裡面放置收發天線,改變各種環境設定,以分析回聲實驗室的特性,並瞭解設計回聲實驗室時所需注意的地方。在量測上,利用網路分析儀掃瞄頻率,採取一邊攪拌電場,一邊利用網路分析儀平均的測量方式,以省去同步測量的機制,花費幾十秒即可讓傳播值收斂。最後,本論文使用已知效率的參考天線與待測天線比對在回聲實驗室的傳播係數,估計待測天線的輻射效率。從天線效率的實際量測與計算比對結果中,顯示我們所開發的回聲實驗室對於低指向性的天線可提供準確的效率估算。總的來說,本回聲實驗室適合量測窄頻且指向性低的天線效率,具有簡易經濟又快速的優點。


This thesis first investigates the propagation of ultra wideband signal in automotive environment, especially the car underhood. Because automotive environments contain many complicatedly metallic structures, the quality of conventional narrow band communication may be sensitive to the locations of transmitters and receivers. This study examines the interaction between broadband signals and obstacles in the propagation environment by means of measurements as well as simulations using a high frequency numerical electromagnetic tool. As to the measurements, the ultra wideband monopole antenna is used to cover the frequency range from 2 to 6 GHz. Two ultra wideband monopole antennas are placed at various locations in the car underhood. Transmission magnitudes and phases are recorded with a network analyzer. By applying the Fourier transform, the frequency spectrum is converted into time domain to exam the propagation characteristics of the environment. In addition to real car measurements, metallic obstacle models are built to examine propagation properties in a controlled environment. With adjustments in the propagation environment setup, the locations of primary scatters can be identified. Finally, a high frequency numerical simulation tool is applied to simulate the propagation environment and to reveal the contribution of each propagation mechanism.
On the other hand, due to the growing popularity of personnel mobile communication devices, miniaturized antenna designs are in great demands. It is expensive and time consuming to evaluate the small antenna performance using a traditional far field chamber. Therefore, this thesis attempts to develop reverberation chambers to evaluate antenna’s efficiency. Transmitting and receiving antennas are placed in various environmental setups to analyze the reverberation chamber characteristics. In measurements, a network analyzer is used to sweep a broad frequency band. Multiple measurements of various stirrer positions are averaged to achieve a converged transmission level, and the convergence is in general achieved in tens of seconds. The antenna efficiency is estimated by comparing the measured transmission level of the AUT antenna with the one from a known reference antenna. According to measurement and calculation results, the antenna efficiency estimation is more accurate for less directive antennas. The reverberation chamber proposed in this paper is suitable for efficiency estimation of narrow band and omni-directional antennas. The method is relatively simple, economic and fast.

摘要 I Abstract II 致謝 IV 目 錄 VI 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 章節概述 3 第二章 車輛環境中的超寬頻訊號傳播 4 2.1 前言 4 2.2 寬頻天線設計與效能驗證 5 2.3 車輛上的超寬頻訊號傳播設置 7 2.3.1 車輛上的傳播結果觀察 11 2.4 傳播實驗模型的建置與模擬方法 22 2.4.1 傳播實驗模型結果觀察 23 2.5 傳播模型與貢獻度模擬分析 26 2.6 小結 33 第三章 回聲實驗室開發 36 3.1 前言 36 3.2 第一版回聲實驗室 38 3.2.1 實驗室一之量測結果與觀察(使用高指向性天線) 40 3.2.2 回聲實驗室量測參數分析 45 3.2.3 使用訊號產生器與頻譜分析儀進行傳輸量測 47 3.2.4 操作頻帶內與操作頻帶外的接收功率比較 52 3.2.5 第一版回聲實驗室測量結果與觀察(低指向性天線) 53 3.2.6 小結 59 3.3 第二版回聲實驗室 60 3.3.1第二版回聲實驗室量測結果與觀察(晶片天線) 63 3.4 實驗室一與實驗室二之結果比對(晶片天線) 69 3.5 天線效率量測與計算 72 3.6 指向性天線效能評估結果與天線姿態的關係 80 3.7 小結 82 第四章 結論 83 參考文獻 86 作者簡介 89

[1] K. Tonoshita, K. Nakatani, and Y. Yamada, “Electric field simulations around a car of the tire pressure monitoring system,” Special Section on 2006 International Symposium on Antennas and Propagation, IEICE Trans. Commun, vol. E90-B., no. 9, 2007.
[2] F. Berens, H. Dunger, S. Czarnecki, T. Bock, R. Reuter, S. Zeisberg, J. Weber, and J. F. Guasch, “UWB car attenuation measurements,” Mobile and Wireless Communications Summit, 2007, pp. 1-5, 2007.
[3] Z. N. Chen, “UWB antennas: design and application,” Information, Communications & Signal Processing, 2007 6th International Conference, pp. 1-5, 2007.
[4] P. Siripornnarachseema, S. Promwong, P. Sithiyopaskul, R. Muanghlua, and N. Sukutamtanti, “The effect of laptop computer shadowing on UWB propagation in an indoor environment,” Communications and Information Technology, 2005. ISCIT 2005. IEEE International Symposium, vol. 2, pp. 975-978, 2005.
[5] First Report and Order, Federal Communications Commission (FCC), February 14, 2002.
[6] Y. Suzuki, and T. Kobayashi, “Ultra wideband signal propagation in desktop environments,” Ultra Wideband Systems and Technologies, 2003 IEEE Conference, pp. 493-497, 2003.
[7] Q. Bonds, T. Weller, and H. Arslan, “An Ultra-Wideband (UWB) pulse dispersion study for antennas in sensor network applications,” Antennas and Propagation International Symposium, 2007 IEEE, pp. 1429-1432, 2007.
[8] X. Zhu, Y. Li, S. Yong, and Z. Zhuang, “A novel definition and measurement method of group delay and its application,” Instrumentation and Measurement, IEEE Transactions, vol. 58, no. 1, pp. 229-233, 2009.
[9] A. Saleh, and R. Valenzuela, “A statistical model for indoor multipath propagation,” Selected Areas in Communications, IEEE Journal, vol. 5, no. 2, pp. 128-137, 1987.
[10] G. G. Joshi, W. A. Davis, and W. L. Stutzman, “Ultra-wideband (UWB) channel dispersion: classification and modeling,” Antennas and Propagation Society International Symposium, 2005 IEEE, vol. 1B, pp. 702-705, 2005.
[11] R. M. Buehrer, W. A. Davis, A. Safaai-Jazi, and D. Sweeney, “Characterization of the ultra-wideband channel,” Ultra Wideband Systems and Technologies, 2003 IEEE Conference, pp. 26-31, 2003.
[12] A. Yaghjian, “An overview of near-field antenna measurements,” Antennas and Propagation, IEEE Transactions, vol. 34, no. 1, pp. 30-45, 1986.
[13] C. Bruns, and R. Vahldieck, “A closer look at reverberation chambers - 3-D simulation and experimental verification,” Electromagnetic Compatibility, IEEE Transactions, vol. 47, no. 3, pp. 612-626, 2005.
[14] W. J. Krzysztofik, and S. Wolny, “Design of small reverberation chamber for handsets testing,” Microwaves, Radar and Wireless Communications,2008. MIKON 2008. 17th International Conference, pp. 1-4, 2008.
[15] A. Sharaiha, P. Besnier, and G.. Le Fur, “Efficiency measurement of UWB small antennas in reverberation chambers,” Antennas and Propagation, 2007. EuCAP 2007. The Second European Conference, pp. 1-5, 2007.
[16] A. A. H. Azremi, H. G. Shiraz, and P. S. Hall, “Small antenna efficiency by the reverberation chamber and the wheeler cap methods, ” Networks, 2005. Jointly held with the 2005 IEEE 7th Malaysia International Conference on Communication., 2005 13th IEEE International Conference, vol 1, 0-0 0, pp. 12-16, 2005.
[17] Y. Huang, N. Abumustafa, Q. G.. Wang, and X. Zhu, “Comparison of two stirrer designs for a new reverberation chamber,” Environmental Electromagnetics, The 2006 4th Asia-Pacific Conference, pp. 450-453, 2006.
[18] 廖文照、林志民,「先進電子偵測辨識及定位技術研究成果報告(完整版)」,國科會專題研究報告( NSC96-2623-7-155-066-D ),臺灣, 2008.
[19] T. G. Ma, and S. J. Wu, “Ultrawideband band-notched folded strip monopole antenna,” Antennas and Propagation, IEEE Transactions, vol. 55, no. 9, pp. 2473-2479, 2007.
[20] wireless communication: http://www.wirelesscommunication.nl/reference/chaptr03/fading/delayspr.htm
[21] C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley and Sons, 1989.
[22] IEC 61000-4-21-Electromagnetic Compatibility (EMC)-Part 4-21: Testing and Measurement Techniques-Reverberation Chamber Test Methods, International Electronical Commission (IEC), Geneva, Switzerland Int. Std., CISPAR/A and IEC SC 77B, 2003.
[23] W. J. Krzysztofik, and S. Wolny, “Design of small reverberation chamber for handsets testing,” Microwaves, Radar and Wireless Communications, 2008. MIKON 2008. 17th International Conference, pp. 1-4, 2008.
[24] J. F. Rosnarho, Mode-stirred Reverberation Chamber Testing, Interference Technology Annual EMC Guide, Siepel, La Trinite-sur-Mer, France, 2004.
[25] D. M. Pozar, A Review of Aperture Coupled Microstrip Antennas: History, Operation, Development, and Applications, Electrical and Computer Engineering University of Massachusetts at Amherst, Amherst, MA, 1996.
[26] W. Yun, Y. J. Yoon, “A wide-band aperture coupled microstrip array antenna using inverted feeding structures,” Antennas and Propagation, IEEE Transactions, vol. 53, no. 2, pp. 861-862, 2005.
[27] J. F. Zurcher, “The SSFIP: a global concept for high-performance broadband planar antennas,” Electronics Letters, vol. 24, no. 23, pp. 1433-1435, 1988.
[28] H. Aliakbarian, K. M. Pour-Aghdam, and S. F. Razavi, “A wideband strip-slot-air-inverted patch antenna array using resonant aperture,” Antennas and Propagation Society International Symposium 2006, IEEE, pp. 1515-1518, 2006.
[29] J. D. Kraus, and R. J. Marhefka, Antennas: For All Applications, 3rd Edition, International Edition, Mc Graw Hill, 2003.
[30] H. W. Liu, C. F. Yang, S. T. Lin, and C. L. Hu, “A planar chip antenna for UWB applications in lower band,” in IEEE AP-S Int. Symp. Dig., Honolulu, Hawaii, pp. 5147-5150, 2007.
[31] C. A. Balanis, Antenna Theory, 3rd Edition, John Wiley and Sons, 2005.
[32] D. M. Pozar, Microwave Engineering, 3rd Edition, John Wiley and Sons, 2005.

QR CODE