簡易檢索 / 詳目顯示

研究生: 鄭品琳
Pin-Lin Cheng
論文名稱: 利用進階PID控制實現永磁同步線型馬達高精密定位控制研究
Study on High-Precision Positioning Control of a PMSLM Using Advanced PID Control
指導教授: 郭永麟
Yong-Lin Kuo
口試委員: 吳宗亮
Tsung-Liang Wu
楊振雄
Cheng-Hsiung Yang
蔡明忠
Ming-Jong Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 81
中文關鍵詞: 永磁同步線型馬達進階PID控制定位控制
外文關鍵詞: PMSLM, advanced PID control, positioning control
相關次數: 點閱:315下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

如今隨著科技的發展,產品不斷朝輕、短、小發展,對於定位控制的精準度也日益嚴格,工具機也朝向高速化、高精密化、自動化的方向前進,並著重於機械、控制、軟體等領域的整合實現。其中線型馬達在直接線性驅動的應用場合有許多優點,逐漸取代旋轉馬達,永磁同步線型馬達具有高能量密度、高轉換效率、高加速能力等優點,其操作原理與旋轉馬達相同,在線型馬達上許多學者也在此研究領域中利用不同的控制方法,研究控制出馬達的最佳性能。
在馬達控制中提及許多控制理論,但在實驗上仍使用的控制方法以向量控制居多,本研究針對永磁同步線型馬達的分析,也利用向量控制的方法進行控制,但僅有向量控制在定位精準度的開發上仍顯不足,所以針對線型馬達的特性與其受到干擾力影響進行分析,其中包含摩擦力、齒槽力、負載造成的結構晃動,並根據分析結果建立相對應的控制器來進行補償,有反積分飽和控制器、干擾觀測器、前饋控制器與輸入成型控制器,以此來增進定位的精準度。
在硬體與實驗的部分採用永磁同步線型馬達,和包含了DSP的線型馬達控制器進行實驗,因為其控制器自行開發的開放性,在控制器內發展一套進階的PID控制器,其中包含了向量控制、反積分飽和控制器、干擾觀測器、前饋控制器與輸入成型控制器,來達到移動2 mm的定位控制,在精準度上容許誤差在±1.5 µm內且穩態時間能小於80 ms的高精準度,且在馬達加載負載5kg、10kg與15 kg上都能達到一定的控制效果。


Nowadays, with the development of science and technology, many products are constantly developing toward lightness, shortness and smallness, and the accuracy of positioning control is becoming stricter. Linear motors have many advantages in the applications of direct linear drives, so they gradually replace rotary motors. Permanent magnet synchronous linear motors have the advantages of high energy densities, high conversion efficiencies, high acceleration abilities, etc. Its operating principle is the same as that of a rotary motor. Many scholars also use different control methods in this research to obtain the best performances of the motors.
Many control theories are developed in motor control, and the most common control method used in experiments is vector control. This thesis focuses on the analysis of permanent magnet synchronous linear motors and applies the vector control method to the motors. However, only applying the vector control is insufficient to have high positioning accuracies, so it is necessary to analyze the influences of disturbance forces, which include friction forces, cogging forces, and structural vibrations due to loads. According to the analysis results, the corresponding controller is developed to compensate the errors caused by the forces in order to enhance the positioning accuracies.
In the hardware and experiments, a permanent magnet synchronous linear motor and a DSP based linear motor controller are used in the experiments. Because of the openness of the self-developed controller, an advanced PID controller is developed. This controller can achieve the positioning control of moving 2 mm, where the accuracy tolerance is within ±1.5 µm, and the steady state time can be less than 80 ms.

摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1高精密定位控制 2 1.2.2模組化控制器 3 1.2.3控制理論與方法 3 1.3 研究動機與目的 4 1.4 研究方法 5 1.5 研究貢獻 5 1.6 論文架構 6 第二章 線型永磁同步馬達控制 7 2.1 馬達數學模式 7 2.1.1 馬達空間向量模式 7 2.1.2 座標轉換 8 2.1.3 馬達機械動態方程式 10 2.2 向量控制 11 2.3 馬達干擾力分析 16 2.3.1 穩態摩擦力 16 2.3.2 馬達齒槽力 18 2.3.3 結構晃動行為 18 2.4 控制器設計 19 第三章 實驗設備規劃 27 3.1 線型永磁同步馬達 27 3.2 線型馬達控制器 29 3.3 光學尺 29 3.4 實驗架構 30 第四章 控制器參數設計與實驗結果 33 4.1 電流控制器參數 34 4.2 位置控制器參數 38 4.3 S曲線規劃模擬與實驗 42 4.4 反積分飽和控制器參數 43 4.5 干擾觀察器參數 50 4.6 前饋控制器參數 53 4.7 輸入成形控制器參數 56 4.8 實驗討論 63 第五章 結論與未來展望 65 5.1 結論 65 5.2 未來展望 66 參考文獻 67

[1] F. Blaschke, “The principle of field orientation as applied to the new transvector closed-loop system for rotating-field machines,” Siemens Review, vol. 34, no. 1, pp.217-220, 1972.
[2] L. Xu, L. Zhen, and E. H. Kim, “Field orientation control of a doubly excited brushless reluctance machine,” Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting, Oct. 6-10, San Diego, CA, USA, vol.1, pp.319-325, 1996.
[3] T. M. Rowan, R. J. Kerkman, and D. Leggate, “A simple on-line adaption for indirect field orientation of an induction machine,” IEEE Transactions on Industry Applications, vol. 27, no. 4, pp. 720-727, 1991.
[4] C. E. Miller, A. van Zyl, and C. F. Landy, “Modelling a permanent magnet linear synchronous motor for control purposes,” IEEE AFRICON 6th Africon Conference in Africa, Oct. 2-4, George, South Africa, vol.2, pp. 671-674, 2002.
[5] S. M Jang, D. J. Youa, W. B. Jang, and J. H. Park, “Practical parameter estimation through space harmonic method and experiment of permanent magnet linear synchronous motor for high accuracy field orient control,” JOURNAL OF APPLIED PHYSICS 97, vol.97, no.10, pp.97.10N517, 2005.
[6] M. Namazov and O. Basturk, “DC motor position control using fuzzy proportional-derivative controllers with different defuzzification methods,” Turkish Journal of Fuzzy Systems, vol.1, no.1, pp. 36-54, 2010.
[7] K. K. Shyu, C. K. Lai, Y. W. Tsai, and Ding-I Yang, “A newly robust controller design for the position control of permanent-magnet synchronous motor,” IEEE Transactions on Industrial Electronics, vol.49, no.3, pp.558-565, 2002.
[8] M. Zribi and J. Chiasson, “Position control of a PM stepper motor by exact linearization,” IEEE Transactions on Automatic Control, vol.36, no.5, pp. 620-625, 1991.
[9] M. S. Mubarok and T. Liu, “Implementation of predictive controllers for matrix-converter-based interior permanent magnet synchronous motor position control systems,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol.7, no.1, pp.261-273, 2019.
[10] W. Zhu, D. Chen, H. Du, and X. Wang, “Position control for permanent magnet synchronous motor based on neural network and terminal sliding mode control,” Transactions of the Institute of Measurement and Control, vol.42, no.9, pp. 1632-1640, 2020.
[11] I. H. Kim and I. S. Youn, “Design of a Low-Order Harmonic Disturbance Observer with Application to a DC Motor Position Control” Energies , vol.13, no.5, pp.1020, 2020.
[12] ETEL公司官網: https://www.etel.ch/
[13] 大銀公司官網: https://www.hiwinmikro.tw/
[14] 林廷恩, “永磁同步線性馬達應用於X-Y定位平臺之高精密伺服控制器設計”。國立臺灣師範大學機電工程學系,碩士論文,2017。
[15] 黃敬鈞, “棒狀線性馬達之設計與製作”。國立聯合大學機械工程學系,碩士論文,2016。
[16] 盧建勳, “鐵芯式永磁同步伺服線性馬達應用於高精密度定位平台之運動控制與設計”。國立臺灣師範大學機電科技學系,碩士論文,2012。
[17] E. M. Ramadan, M. E. Bardini, N. M. Rabaie, and M. A. Fkirin, “Embedded system based on a real time fuzzy motor speed controller,” Ain Shams Engineering Journal, vol. 5, no.2, pp.399-409, 2014.
[18] M. Suetake, I. N. da Silva, and A. Goedtel, “Embedded DSP-based compact fuzzy system and its application for induction-motor V/f speed control,” IEEE Transactions on Industrial Electronics, vol.58, no.3, pp.750-760, 2011.
[19] A. A. Khater, M. El-Bardini, and N. M. El-Rabaie, “Embedded adaptive fuzzy controller based on reinforcement learning for DC motor with flexible shaft,” Arab J Sci Eng , vol.40, no.8, pp.2389–2406 , 2015
[20] S. X. Yang, H. Li, M. Q. Meng, and P. X. Liu, “An embedded fuzzy controller for a behavior-based mobile robot with guaranteed performance,” IEEE Transactions on Fuzzy Systems, vol.12, no.4, pp.436-446, 2004.
[21] C. Lin, H. Yau, and Y. Tian, “Identification and compensation of nonlinear friction characteristics and precision control for a linear motor stage,” IEEE/ASME Transactions on Mechatronics, vol.18, no.4, pp.1385-1396, 2013.
[22] K. Cho, J. Kim, S. B. Choi, and S. Oh, “A high-precision motion control based on a periodic adaptive disturbance observer in a PMLSM,” IEEE/ASME Transactions on Mechatronics, vol.20, no.5, pp.2158-2171, 2015.
[23] T. Wen, B. Xiang, Z. Wang, and S. Zhang, “Speed control of segmented PMLSM based on improved SMC and speed compensation model,” Energies, vol.13, no.4, pp.981, 2020.
[24] M. Wang, L. Li, and D. Pan, “Detent force compensation for PMLSM systems based on structural design and control method combination,” IEEE Transactions on Industrial Electronics, vol.62, no.11, pp.6845-6854, 2015.
[25] M. Chabchoub, I. Ben Salah, G. Krebs, R. Neji, and C. Marchand, “PMSM cogging torque reduction: Comparison between different shapes of magnet,” 2012 First International Conference on Renewable Energies and Vehicular Technology, Mar. 26-28 , Nabeul, Tunisia, pp. 206-211, 2012.
[26] Y. Luo, Y. Q. Chen, and Y. G. Pi, “Cogging effect minimization in PMSM position servo system using dual high-order periodic adaptive learning compensation,” ISA Transactions, vol.49, no.4, pp.479-488, 2010.
[27] R. Lateb, N. Takorabet, and F. Meibody-Tabar, “Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors,” IEEE Transactions on Magnetics, vol.42, no.3, pp.442-445, 2006.
[28] N. Nevaranta, M. Huikuri, M. Niemelä, and J. Pyrhönen, “Cogging force compensation of a discontinuous permanent magnet track linear motor drive,” 2017 19th European Conference on Power Electronics and Applications, Sep. 11-14, Warsaw, Poland, pp. 1-7, 2017.
[29] 顏木田,賴逸鵬,張良舜, “線性馬達驅動之線切割放電加工機研究”。華梵大學機電工程學系,行政院國家科學委員會專題研究計畫,2006。
[30] 劉昌煥, “交流電機控制:向量控制與直接轉矩控制原理”。台灣東華書局,2008。
[31] P. Famouri, “Control of a linear permanent magnet brushless dc motor via exact linearization methods,” IEEE Trans. Energy Conversion, vol.7, no.3, pp.544-551, 1992.
[32] Y. Kung, “Design and implementation of a high-performance PMLSM drives using DSP chip,” IEEE Transactions on Industrial Electronics, vol.55, no.3, pp.1341-1351, 2008.
[33] R.J. Lee, P. Pillay, and R.G. Harley, “D,Q reference frames for the simulation of induction motors,” Electric Power Systems Research, vol. 8, no.1, pp.15-26, 1984.
[34] K. Johanastrom and C. Canudas-de-Wit, “Revisiting the LuGre friction model,” IEEE Control Systems Magazine, vol.28, no.6, pp.101-114, 2008.
[35] N. Nevaranta, M. Huikuri, M. Niemelä, and J. Pyrhönen, “Cogging force compensation of a discontinuous permanent magnet track linear motor drive,” 2017 19th European Conference on Power Electronics and Applications, Sep. 11-14, Warsaw, Poland, pp. 1-7, 2017.
[36] C. Bohn and D. P. Atherton, “An analysis package comparing PID anti-windup strategies,” IEEE Control Systems Magazine, vol.15, no.2, pp.34-40, 1995.
[37] G. F. Franklin, J. D. Powell, and M. Workman, “Digital control of dynamic systems,” Addison Wesley Longman, Vol. 3, 1998.
[38] W. Chen, J. Yang, L. Guo, and S. Li, “Disturbance-observer-based control and related methods—an overview,” IEEE Transactions on Industrial Electronics, vol.63, no.2, pp.1083-1095, 2016.
[39] T. Singh, “Optimal reference shaping for dynamical systems,” CRC Press, pp. 24-46, 2009.
[40] K. Zheng and L. Cheng, “Adaptive s-curve acceleration/deceleration control method,” 2008 7th World Congress on Intelligent Control and Automation, Jun. 25-27, Chongqing, China, pp.2752-2756, 2008
[41] ETEL馬達型號網站:https://www.etel.ch/zh/%E7%9B%B4%E7%BA%BF%E7%94
%B5%E6%9C%BA/lms/
[42] 德州儀器公司DSP型號網站: https://reurl.cc/Xlex2E
[43] 雷尼紹公司光學尺網站: https://reurl.cc/Gbdggv
[44] H. Shin and J. Park, “Anti-windup PID controller with integral state predictor for variable-speed motor drives,” IEEE Transactions on Industrial Electronics, vol.59, no.3, pp.1509-1516, 2012.

無法下載圖示 全文公開日期 2023/10/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE