簡易檢索 / 詳目顯示

研究生: 許竣瑝
Jun-Huang Xu
論文名稱: 以濕式原子層沉積鋁酸鋰修飾富鎳陰極用於液態或固態電解質電池
Modifying the Nickel-rich Cathode with Wet Atomic Layer Deposited Lithium Aluminate for Batteries with Liquid or Solid-state Electrolytes
指導教授: 蘇威年
Wei-Nien Su
黃炳照
Bing Joe Hwang
吳溪煌
She-Huang Wu
蔡秉均
Ping-Chun Tsai
口試委員: 柯玨宇
Jyue-Yu Ke
蘇威年
Wei-Nien Su
黃炳照
Bing Joe Hwang
吳溪煌
She-Huang Wu
蔡秉均
Ping-Chun Tsai
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 147
中文關鍵詞: 富鎳層狀材料正極材料問題表面改質濕式原子氣相沈積法正極與固態電解質介面
外文關鍵詞: Nickel-rich layered material, cathode material problem, surface modification, wet atomic layer deposition coating method, cathode electrolyte interphase
相關次數: 點閱:267下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

富鎳層狀材料因可大幅提升放電電容量是目前大家積極開發的對象。但NMC811仍然有許多問題需要克服像是電容量衰退快速、熱穩定性差,並在電池中容易產氣,且其與電解液的反應性高可能會升成更多的副產物等問題,這些都會影響其電化學表現。
在這項研究中,利用新的濕式原子氣相沉積法(Wet Atomic Layer Deposition)來包覆鋁酸鋰保護層層,以作為人工固態電解質介面,穩定富鎳正極材料結構,避免其與電解液直接接觸,來達到減少發生副反應的機率,而實驗結果顯示,塗有鋁酸鋰的正極材料在0.1C充放電速率下,經過100次循環後,電容量保持率仍然維持有87%,比起未包覆NMC811及Al2O3包覆的79%、81%高,此外在CV測試以及阻抗測試也有較小的極化現象及阻抗上升,並且塗覆鋁酸鋰的材料在高電位(5C)充放電速率下,經過100圈後其仍然保有85.49%的容量保持率而Al2O3塗層樣品則是78.38%,至於Pristine NMC僅僅只剩下70.4%的電容量保持率,在變速率測試的部分塗覆鋁酸鋰的材料也顯得更加穩定,其歸因於LiAlO2其導離率優於Al2O3,並且具有更好的可逆循環性。
然而此技術需要透過暴露蒸氣,使前驅物Al(OC2H5)3能與NMC811表面氫氧基反應鍵結來完成包覆,然而我們發現在反應的過程由於Al(OC2H5)3前驅物溶解在無水酒精中,此時溶液中的質子會與NMC結構中的鋰發生質子交換,使NMC811中的鋰被置換出來,而造成初始電容量的損失,影響其電化學表現,因此我們藉由添加不同濃度比的LiOH使溶液成微鹼性,並藉由LiOH來減少質子與NMC中的鋰發生置換現象,並將包覆層由Al2O3轉變為導離率較好並且電化學穩定性也較優的鋁酸鋰(LiAlO2),藉此來提升其電化學表現。
再來由於製程步驟簡單且快速,並證實在不更改製程參數的條件下,可以將原先5g的量增加至30g並且不會改變其包覆LiAlO2的電化學表現,證實Wet-ALD可簡單擴大製程,而我們也有將LiAlO2 coated NMC811組成正極複合材料運用至全固態電池上(P-LiAlO2 coated_NMC811_1Eq-LiOH-1%VGCF||P-LPSC||In),而在阻抗測試上,不論正極材料在未充電情況下,或是在高電位情況下,比起Pristine NMC811,皆可抑制阻抗值的上升,歸因於coating LiAlO2 能夠減少NMC與LPSC直接接觸產生化學反應;而在0.05C充放電速率下經過40圈循環後,LiAlO2塗層樣品保持了大約63.5% 的電容量保持率,而Pristine NMC僅剩下42.4%,因此可以證實緻密且導離率好的LiAlO2包覆層能夠有效提高正極材料與LPSC界面穩定性,來提高其在全固態電池上的電化學表現。


Nickel-rich layered materials have been actively developed due to their high specific capacitance. However, NMC811 still has many problems that need to be overcome, such as rapid capacitance decline, poor thermal stability, battery gas production, and high reactivity with the electrolyte may cause more by-products, which will affect electrochemical performance.
In this study, a new coating method Wet-ALD was proposed to coat the metal oxide layer as an artificial solid electrolyte interface layer to stabilize the nickel-rich cathode material, avoid direct contact with the electrolyte, and reduce side reactions. This technology requires exposure to vapor so that the precursor Al(OC2H5)3 can react and bond with the hydroxyl groups on the surface of NMC811. However, when the Al(OC2H5)3 precursor was dissolved in anhydrous alcohol, the proton in the solution would exchange with the lithium in the NMC structure during the coating process. This led to the exhaustion of lithium in the NMC811 and the loss of the initial capacity, affecting the following electrochemical performance. Thus, additional LiOH was added to make the solution slightly alkaline, and it can mitigate the proton exchange phenomenon. Further, the coating material is changed from Al2O3 to lithium aluminate (LiAlO2) because the latter has better conductivity and electrochemical stability, thereby improving its electrochemical performance.
In the experiment, the cathode material coated with lithium aluminate, its capacity retention remained 87% after charge and discharge at 0.1C for 100 cycles, higher than the values of pristine NMC811 and Al2O3 of 79% and 81%. In addition, LiAlO2 coating also had a more negligible polarization in the CV and less rise in impedance test. The cell with lithium aluminate coated cathode maintained capacity retention of 85.49% when cycled at a high rate (5 C) after 100 cycles. In contrast, the Al2O3 coating was 78.38%, and the pristine NMC only had 70.4%. The material coated with lithium aluminate was also more stable in the rate capability test. It can be attributed to LiAlO2 having better conductivity and reversible cyclability than Al2O3.
LiAlO2 coated NMC811 was also employed to form a composite in an all-solid-state battery (P-LiAlO2 coated NMC811_1Eq-LiOH-1%VGCF||P-LPSC||In). In the impedance test, whether the composite cathode was not charged or at high potential, compared with pristine NMC811, it could reduce the impedance increase attributed to LiAlO2 coating and prevent direct contact between NMC and LPSC from producing a chemical reaction. The LiAlO2 coated sample maintained high capacity retention of about 63.5%, while the pristine NMC only had 42.4% at a charge-discharge C-rate of 0.05C after 40 cycles. Therefore, it can be proved that the dense and complete LiAlO2 coating with good conductivity can effectively improve the stability of the interface between the cathode material and LPSC to enhance its electrochemical performance on all-solid-state batteries.

摘要 I ABSTRACT III 致謝 V 目錄 VIII 圖目錄 XI 表目錄 XV 第 1 章 緒論 1 1.1 前言 1 1.2 鋰離子電池種類 2 1.3 鋰離子的組成及反應機制 3 1.4 正極(陰極)材料 6 1.4.1 層狀LiMO2材料 8 1.4.2尖晶石型LiM2O4材料 10 1.4.3橄欖石型LiMPO4材料 12 第 2 章 文獻回顧 13 2.1 富鎳層狀正極材料(NI-RICH LAYERED CATHODE MATERIAL) 13 2.2 富鎳正極材料之問題 14 2.2.1 陽離子混合 (Cation mixing) 14 2.2.2 熱穩定性問題 17 2.2.3 表面汙染物影響 20 2.2.4 NCM 微裂紋的形成 22 2.3 正極材料之表面改質方法 26 2.3.1 溶膠凝膠法 26 2.3.2 化學氣相沉積法 28 2.3.3 原子層沉積法 30 2.3.4 乾式包覆法 34 2.4 研究動機與目的 37 第 3 章 實驗方法與儀器設備 39 3.1 實驗儀器及設備 39 3.2 實驗藥品 40 3.3 實驗步驟及方法 41 3.3.1 LiNi0.8Co0.1Mn0.1O2合成 41 3.3.2 Al2O3濕式表面包覆實驗方法 42 3.3.3 LiAlO2濕式表面包覆實驗方法 44 3.4 材料結構及特性分析 46 3.4.1 XRD X-ray diffraction分析儀 46 3.4.2 傅立葉轉換紅外光譜儀(FTIR) 47 3.4.3 X射線光電子能譜 (XPS) 48 3.4.4 場發射掃描式電子顯微鏡 (FE-SEM) 49 3.4.5 場發射穿透式電子顯微鏡 (FE-TEM) 50 3.5 電池材料電化學特性測試 51 3.5.1 充放電測試 51 3.5.2 交流阻抗分析 51 3.5.3 循環伏安分析 53 第 4 章 利用新型濕式原子沉積法(WET-ALD) 鋁酸鋰修飾NMC811 54 4.1 LIALO2包覆NMC811材料結構、型態鑑定 54 4.1.1 包覆材料粉體XRD結構分析 54 4.1.2 包覆材料粉體SEM型態分析 56 4.1.3 FTIR -OH官能基強度分析 59 4.1.4 包覆材料粉體XPS表面鑑定分析 61 4.1.5 包覆材料粉體TEM型態分析 62 4.2 LIALO2包覆NMC811材料電化學分析 67 4.2.1 開環電位交流阻抗分析 67 4.2.2 靜置後(72hr)交流阻抗分析 69 4.2.3 循環伏安法氧化還原電流分析 71 4.2.4 長圈數穩定性測試 73 4.2.5 變速率性能測試 87 4.2.6 循環後之XRD結構分析 89 4.2.7 循環後之SEM型態分析 91 4.2.8 長圈數循環後交流阻抗分析 94 4.2.9 長圈數循環後XPS極片表面鑑定分析 96 4.3 擴大WET-ALD 包覆產量 103 4.3.1 鑑定包覆效果FTIR -OH官能基強度分析 104 4.3.2 鑑定包覆效果靜置後(72hr)交流阻抗分析 105 4.4 NMC811包覆LIALO2 應用於固態電池 106 4.4.1 手磨測試正極材料與LPSC之化學反應 108 4.4.2 開環電位&靜置(96hr)交流阻抗分析 109 4.4.3 高電位阻抗測試 111 4.4.4 長圈數穩定性測試 113 第5章 結論 115 第6章 未來展望 118 參考文獻 119

[1] ZHAO, Hongyuan, et al. A simple and mass production preferred solid-state procedure
to prepare the LiSixMgxMn2− 2xO4 (0≤ x≤ 0.10) with enhanced cycling stability
and rate capability. Journal of Alloys and Compounds, 2016, 671: 304-311.
[2] HOU, Peiyu, et al. Surface/interfacial structure and chemistry of high‐energy nickel
rich layered oxide cathodes: advances and perspectives. Small, 2017, 13.45: 1701802.
[3] GEORGE, Steven M. Atomic layer deposition: an overview. Chemical reviews, 2010,
110.1: 111-131.
[4] EDSTROEM, Kristina; GUSTAFSSON, Torbjoern; THOMAS, John Oswald. The
cathode–electrolyte interface in the Li-ion battery. Electrochimica Acta, 2004, 50.2-3:
397-403.
[5] KARAAL, Şeyma, et al. The effect of LiBF4 concentration on the discharge and
stability of LiMn2O4 half cell Li ion batteries. Materials Science in Semiconductor
Processing, 2015, 38: 397-403.
[6] GOODENOUGH, John B.; PARK, Kyu-Sung. The Li-ion rechargeable battery: a
perspective. Journal of the American Chemical Society, 2013, 135.4: 1167-1176.
[7] MIZUSHIMA, K. J. P. C., et al. LixCoO2 (0< x<-1): A new cathode material for
batteries of high energy density. Materials Research Bulletin, 1980, 15.6: 783-789.
[8] REIMERS, Jan N.; DAHN, J. R. Electrochemical and in situ X‐ray diffraction studies
of lithiumintercalation in Li x CoO2. Journal of the Electrochemical Society, 1992,
139.8:2091.
[9] DYER, Lawrence D.; BORIE JR, Bernard S.; SMITH, G. Pedro. Alkali metal-nickel
oxides of the type MNiO2. Journal of the American Chemical Society, 1954, 76.6:
14991503.
[10] NISAR, Umair, et al. Understanding the origin of the ultrahigh rate performance of a
SiO2-modified LiNi0. 5Mn1. 5O4 cathode for lithium-ion batteries. ACS Applied
EnergyMaterials, 2019, 2.10: 7263-7271.
[11] ERIASAMY, P., et al. Solid-state synthesis and characterization of LiCoO2 and LiNi
y Co1− y solid solutions. Bulletin of Materials Science, 2000, 23.5: 345-348.
[12]WALLER, Gordon Henry, et al. Structure and surface chemistry of Al2O3 coated
LiMn2O4 nanostructured electrodes with improved lifetime. Journal of Power
Sources,2016, 306: 162-170.
[13] LIANG, Chaoping, et al. Unraveling the origin of instability in Ni-rich LiNi1–2 x Co x Mn x O2 (NCM) cathode materials. The Journal of Physical Chemistry C, 2016, 120.12: 6383-6393.
[14] Thackeray, M.; David, W.; Bruce, P.; Goodenough, J., Lithium insertion into
manganese spinels. Materials Research Bulletin 1983, 18 (4), 461-472.
[15] LIU, H., et al. Cathode materials for lithium ion batteries prepared by sol-gel
methods. Journal of Solid State Electrochemistry, 2004, 8.7: 450-466.
[16] Dai X, Zhou A, Xu J, Lu Y, Wang L, Fan C, Li J (2016) J Phys Chem C 120:422430.
[17] ZHU, Qing, et al. Improved cycle performance of LiMn2O4 cathode material for
aqueous rechargeable lithium battery by LaF3 coating. Journal of Alloys and
Compounds,2016, 654: 384-391.
[18] THIRUNAKARAN, R.; LEW, Gil Hwan; YOON, Won-Sub. Novel chelating agent
assisted dual doped spinel via sol–gel method for lithium rechargeable
batteries. Journalof Electroanalytical Chemistry, 2016, 767: 141-152.
[19] NITTA, Naoki, et al. Li-ion battery materials: present and future. Materials today,
2015, 18.5: 252-264.
[20] THIRUNAKARAN, R., et al. Phthalic acid assisted nano-sized spinel LiMn2O4 and
LiCrxMn2− xO4 (x= 0.00–0.40) via sol–gel synthesis and its electrochemical
behaviourfor use in Li-ion-batteries. Materials Research Bulletin, 2008, 43.8-9:
2119-2129.
[21] Kiani MA, Mousavi MF, Rahmanifar MS Int J Electrochem Sci, 2011, 812595.
[22] ZHAO, Hongyuan, et al. A simple and mass production preferred solid-state
procedure to prepare the LiSixMgxMn2− 2xO4 (0≤ x≤ 0.10) with enhanced cycling
stability and rate capability. Journal of Alloys and Compounds, 2016, 671: 304-311.
[23] WALLER, Gordon Henry, et al. Structure and surface chemistry of Al2O3 coated
LiMn2O4 nanostructured electrodes with improved lifetime. Journal of Power
Sources,2016, 306: 162-170.
[24] KARAAL, Şeyma, et al. The effect of LiBF4 concentration on the discharge and
stability of LiMn2O4 half cell Li ion batteries. Materials Science in Semiconductor
Processing, 2015, 38: 397-403.
[25] LIU, Jintao, et al. Synthesis and electrochemical performance evaluations of
polyhedra spinel LiAlxMn2-xO4 (x≦ 0.20) cathode materials prepared by a
solutioncombustion technique. Journal of Alloys and Compounds, 2017, 728: 1315
1328.
[26] OUYANG, C. Y.; SHI, S. Q.; LEI, M. S. Jahn–Teller distortion and electronic
structure of LiMn2O4. Journal of Alloys and Compounds, 2009, 474.1-2: 370-374.
[27] LI, Xifei; XU, Youlong; WANG, Chunlei. Suppression of Jahn–Teller distortion of
spinel LiMn2O4 cathode. Journal of Alloys and Compounds, 2009, 479.1-2: 310313.
[28] WANG, Xiaoqing; NAKAMURA, Hiroyoshi; YOSHIO, Masaki. Capacity fading
mechanism for oxygen defect spinel as a 4 V cathode material in Li-ion
batteries. Journalof power sources, 2002, 110.1: 19-26.
[29] ARUMUGAM, D.; KALAIGNAN, G. Paruthimal. Synthesis and electrochemical
characterizations of Nano-SiO2-coated LiMn2O4 cathode materials for rechargeable
lithium batteries. Journal of Electroanalytical Chemistry, 2008, 624.1-2: 197-204.
[30] GUMMOW, R. J.; DE KOCK, A.; THACKERAY, M. M. Improved capacity
retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid
StateIonics, 1994, 69.1: 59-67.
[31] Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., Phospho‐olivines as
positive‐electrode materials for rechargeable lithium batteries. Journal of the
electrochemical society 1997, 144 (4), 1188.
[32] YAMADA, Atsuo, et al. Olivine-type cathodes: Achievements and problems. Journal
of Power Sources, 2003, 119: 232-238.
[33] YAMADA, Atsuo, et al. Olivine-type cathodes: Achievements and problems. Journal
of Power Sources, 2003, 119: 232-238.
[34] PADHI, Akshaya K.; NANJUNDASWAMY, Kirakodu S.; GOODENOUGH, John B.
Phospho‐olivines as positive‐electrode materials for rechargeable lithium
batteries. Journal of the electrochemical society, 1997, 144.4: 1188.
[35] YAMADA, Atsuo; CHUNG, Sai-Cheong; HINOKUMA, Koichiro. Optimized
LiFePO4 for lithium battery cathodes. Journal of the electrochemical society, 2001,
148.3:A224.
[36] RAJIVE, Tomy M.; JAYALEKSHMI, S. Structural, electrical and electrochemical
characterization of high frequency magnetron sputtered spinel oxide cathode films
forlithium ion battery applications. 2012. PhD Thesis. Cochin University Of Science
AndTechnology.
[37] YAMADA, Atsuo, et al. Olivine-type cathodes: Achievements and problems. Journal of Power Sources, 2003, 119: 232-238.
[38] MACNEIL, Dean D., et al. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. Journal of power sources, 2002, 108.1-2: 8-14.
[39] TAKAHASHI, Masaya, et al. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid state ionics, 2002, 148.3-4: 283-289.
[40] JOACHIN, Humberto, et al. Electrochemical and thermal studies of carbon-coated LiFePO4 cathode. Journal of the Electrochemical Society, 2009, 156.6: A401.
[41] ZAGHIB, K., et al. Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries. Journal of Power Sources, 2012, 219: 36-44.
[42] ZAGHIB, Karim, et al. Safe and fast-charging Li-ion battery with long shelf life for power applications. Journal of power sources, 2011, 196.8: 3949-3954.
[43] BJÖRLING, Carl Olof; WESTGREN, A. Minerals of the Varuträsk Pegmatite: IX. X-Ray Studies on Triphylite, Varulito, and their Oxidation Products. Geologiska Föreningen i Stockholm Förhandlingar, 1938, 60.1: 67-72.
[44] NOH, Hyung-Joo, et al. Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz] O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of power sources, 2013, 233: 121-130.
[45] ZHANG, Qiyu, et al. Pre-oxidizing the precursors of Nickel-rich cathode materials to regulate their Li+/Ni2+ cation ordering towards cyclability improvements. Journal of Power Sources, 2018, 396: 734-741.
[46] DAHN, J. R.; VON SACKEN, Ulrich; MICHAL, C. A. Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH) 2 structure. Solid State Ionics, 1990, 44.1-2: 87-97.
[47] CHENG, Cuixia, et al. High rate performances of the cathode material LiNi1/3Co1/3Mn1/3O2 synthesized using low temperature hydroxide precipitation. Materials Research Bulletin, 2011, 46.11: 2032-2035.
[48] LIU, Wen, et al. Nickel‐rich layered lithium transition‐metal oxide for high‐energy lithium‐ion batteries. Angewandte Chemie International Edition, 2015, 54.15: 4440-4457.
[49] BAK, Seong-Min, et al. Structural changes and thermal stability of charged LiNi x Mn y Co z O2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS applied materials & interfaces, 2014, 6.24: 22594-22601.
[50] WANG, Yadong; JIANG, Junwei; DAHN, J. R. The reactivity of delithiated Li (Ni1/3Co1/3Mn1/3) O2, Li (Ni0. 8Co0. 15Al0. 05) O2 or LiCoO2 with non-aqueous electrolyte. Electrochemistry Communications, 2007, 9.10: 2534-2540.
[51] BAK, Seong-Min, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged Li x Ni0. 8Co0. 15Al0. 05O2 cathode materials. Chemistry of Materials, 2013, 25.3: 337-351.
[52] LIPSON, Albert L., et al. Improving the thermal stability of NMC 622 Li-ion battery cathodes through doping during coprecipitation. ACS applied materials & interfaces, 2020, 12.16: 18512-18518.
[53] YOON, Chong S., et al. Self-passivation of a LiNiO2 cathode for a lithium-ion battery through Zr doping. ACS Energy Letters, 2018, 3.7: 1634-1639.
[54] MYUNG, Seung-Taek, et al. Role of alumina coating on Li− Ni− Co− Mn− O particles as positive electrode material for lithium-ion batteries. Chemistry of Materials, 2005, 17.14: 3695-3704.
[55] EOM, Junho; KIM, Min Gyu; CHO, Jaephil. Storage characteristics of LiNi0. 8Co0. 1+ x Mn0. 1− x O2 (x= 0, 0.03, and 0.06) cathode materials for lithium batteries. Journal of the electrochemical society, 2008, 155.3: A239.
[56] HOU, Peiyu, et al. Surface/interfacial structure and chemistry of high‐energy nickel‐rich layered oxide cathodes: advances and perspectives. Small, 2017, 13.45: 1701802.
[57] EDSTROEM, Kristina; GUSTAFSSON, Torbjoern; THOMAS, John Oswald. The cathode–electrolyte interface in the Li-ion battery. Electrochimica Acta, 2004, 50.2-3: 397-403.
[58] Liu, W.; Oh, P.; Liu, X.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J.,
Nickel‐rich layered lithium transition‐metal oxide for high‐energy lithium‐ion batteries.Angewandte Chemie International Edition 2015, 54 (15), 4440-4457.
[59] YAN, Pengfei, et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nature communications, 2017, 8.1: 1-9.
[60] LIU, Hao, et al. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. Nano letters, 2017, 17.6: 3452-3457.
[61] RYU, Hoon-Hee, et al. Capacity fading of Ni-rich Li [Ni x Co y Mn1–x–y] O2 (0.6≤ x≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation?. Chemistry of materials, 2018, 30.3: 1155-1163.
[62] WATANABE, Shoichiro, et al. Capacity fading of LiAlyNi1− x− yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (effect of depth of discharge in charge–discharge cycling on the suppression of the micro-crack generation of LiAlyNi1− x− yCoxO2 particle). Journal of Power Sources, 2014, 260: 50-56.
[63] S. Watanabe, M. Kinoshita, T. Hosokawa, K. Morigaki, K. Nakura Capacity fade of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1−x−yCoxO2 cathode after cycle tests in restricted depth of discharge ranges) J. Power Sources, 258 (2014), pp. 210-217.
[64] SHU, Jie, et al. In-situ X-ray diffraction study on the structural evolutions of LiNi0. 5Co0. 3Mn0. 2O2 in different working potential windows. Journal of Power Sources, 2014, 245: 7-18.
[65] YAN, Pengfei, et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nature communications, 2017, 8.1: 1-9.
[66] HWANG, Bing-Joe, et al. In-situ XRD investigations on structure changes of ZrO2-coated LiMn0. 5Ni0. 5O2 cathode materials during charge. Journal of power sources, 2007, 174.2: 761-765.
[67] HU, Shao-Kang, et al. Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. Journal of Power Sources, 2009, 188.2: 564-569.
[68] WANG, Jiajun; SUN, Xueliang. Understanding and recent development of carbon coating on LiFePO 4 cathode materials for lithium-ion batteries. Energy & Environmental Science, 2012, 5.1: 5163-5185.
[69] MIIKKULAINEN, Ville, et al. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. Journal of Applied Physics, 2013, 113.2: 2.
[70] GEORGE, Steven M. Atomic layer deposition: an overview. Chemical reviews, 2010, 110.1: 111-131.
[71] WALLER, Gordon Henry, et al. Structure and surface chemistry of Al2O3 coated LiMn2O4 nanostructured electrodes with improved lifetime. Journal of Power Sources, 2016, 306: 162-170. [72] NISAR, Umair, et al. Understanding the origin of the ultrahigh rate performance of a SiO2-modified LiNi0. 5Mn1. 5O4 cathode for lithium-ion batteries. ACS Applied Energy Materials, 2019, 2.10: 7263-7271.
[73] TAKAHASHI, Masaya, et al. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries. Journal of Power Sources, 2001, 97: 508-511.
[74] PADHI, Akshaya K.; NANJUNDASWAMY, Kirakodu S.; GOODENOUGH, John B. Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society, 1997, 144.4: 1188.
[75] LOZEMAN, Jasper JA, et al. Spectroelectrochemistry, the future of visualizing electrode processes by hyphenating electrochemistry with spectroscopic techniques. Analyst, 2020, 145.7: 2482-2509.
[76] ZHANG, Hanlei, et al. Layered oxide cathodes for Li-ion batteries: oxygen loss and vacancy evolution. Chemistry of Materials, 2019, 31.18: 7790-7798.
[77] KALYANI, Palanichamy; KALAISELVI, Nallathamby. Various aspects of LiNiO2 chemistry: A review. Science and technology of advanced materials, 2005, 6.6: 689.
[78] INKSON, Beverley J. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In: Materials characterization using nondestructive evaluation (NDE) methods. Woodhead Publishing, 2016. p. 17-43.
[79] PADHI, Akshaya K.; NANJUNDASWAMY, Kirakodu S.; GOODENOUGH, John B. Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society, 1997, 144.4: 1188.
[80] HUANG, Chen-Jui, et al. Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nature communications, 2021, 12.1: 1-10.

無法下載圖示 全文公開日期 2027/08/25 (校內網路)
全文公開日期 2027/08/25 (校外網路)
全文公開日期 2027/08/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE