簡易檢索 / 詳目顯示

研究生: 陳冠宏
Kuan-Hung Chen
論文名稱: 探討利用米糠水解液為營養源時共培養對生質量及脂含量之影響
Effect of the co-culture on the biomass and lipid content using rice bran hydrolysate as nutrition
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: Suryadi Ismadji
Suryadi Ismadji
Ahmed Fazary
Ahmed Fazary
Felycia Edi Soetaredjo
Felycia Edi Soetaredjo
吳耀豐
Alchris Woo Go
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 53
中文關鍵詞: 米糠共培養Lipomyces starkeyiChlorella vulgaris
外文關鍵詞: Rice bran, Co-culture, Lipomyces starkeyi, Chlorella vulgaris
相關次數: 點閱:173下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於近年來對石化燃料的需求劇增再加上80%的主要能源來自於石化燃料,為了減少石化燃料的依賴,因此替代能源的尋找及研究,一直是近年來的熱門議題。從油脂微生物中萃取油脂可被視作生質柴油的潛力來源。此外如何降低培養油脂微生物過程中所需的成本,農業廢棄物的再利用為有效的降低培養成本的方法之一。
    米糠是碾米過程中低價值的副產物,在全世界產量龐大。米糠富含碳水化合物,可成為微生物發酵的營養源。本研究利用米糠水解液作為營養源,探討共培養對於生物量及油脂含量的影響。米糠利用稀硫酸進行水解反應成為水解液,探討不同的反應時間、攪拌速度和硫酸的濃度的影響。用2%稀硫酸在90 oC、300 rpm下反應3.5小時可得到最高的水解液醣含量。水解液經去毒步驟,應用於酵母菌Lipomyces starkeyi及微藻Chlorella vulgaris共培養的發酵上。發現共培養的方法無法有效的增加生物量及油脂含量。本研究利用酵母菌Lipomyces starkeyi得到最高的生物量及油脂含量及油脂產量分別為 9.4 g/L、34.30%及3.22 g/L。


    The demand of petroleum fuel is increasing and 80% of primary energy is produced from petroleum fuel. In order to decrease the consumption of fossil fuels, alternative renewable fuel has been a hot topic in recent years. Microbial oil from oleaginous microorganism is considered as a potential candidate for biodiesel production. Agricultural waste reused can reduce the cost of oleaginous microorganism for lipid production.
    Rice bran is an underused byproduct from rice milling and is produced in large quantity worldwide. Rice bran contains higher polysaccharide which can be considered as nutrient source for microbial fermentation.
    In this study, the effect of co-culture on biomass and lipid content using rice bran hydrolysate was investigated. The rice bran was subjected to acid hydrolysis with various hydrolysis time, stirring speed and sulfuric acid concentration. The optimal condition of rice bran hydrolysis was using 2 % sulfuric acid at 90°C for 3.5 h with 300 rpm stirring speed. After detoxifying and neutralizing, the rice bran hydrolysate was used for the co-culture of L. starkeyi and C. vulgaris. It was found that co-culture cannot improve biomass and lipid content. The culturing of L. starkeyi can achieve higher biomass and lipid content than co-culture. The highest biomass, lipid content and lipid production obtained were 9.4 g/L, 34.3% and 3.22 g/L, respectively.

    中文摘要 Ⅰ Abstract Ⅱ Acknowledgement Ⅲ Contents Ⅳ List of figures Ⅶ List of tables Ⅷ Chapter 1 1 Introduction 1 1.1 Background 1 1.2 Objective 3 Chapter 2 4 Literature review 4 2.1 Rice bran 4 2.2 Acid hydrolysis 4 2.3 Detoxification method 5 2.3.1 Overliming 5 2.3.2 Activated carbon adsorption 5 2.3.3 Ion-exchange resins 6 2.4 Oleaginous microorganisms 7 2.4.1 Microalgae 8 2.4.2 Oleaginous yeasts 8 2.5 Lipid extraction 9 2.5.1 Soxhlet extraction 10 Chapter 3 11 Materials and Methods 11 3.1 Experiment materials 11 3.1.1 Microorganisms 11 3.1.2 Chemicals 11 3.2 Apparatus and equipment 12 3.3 Flow chat 13 3.4 Hydrolysis of rice bran 16 3.5 Detoxification and neutralization of RBH 16 3.6 Total Carbohydrates (TC) 16 3.7 Total Reducing Sugar (TRS) 17 3.8 Fermentation 17 3.8.1 Microorganism 17 3.8.2 Inoculum 17 3.8.3 Microbial fermentation 18 3.8.4 Cell harvest 18 3.8.5 Cell pre-treatment 18 3.9 Soxhlet extraction 18 Chapter 4 20 Results and Discussion 20 4.1 Optimization of rice bran hydrolysis 20 4.1.1 Effect of hydrolysis time on rice bran hydrolysis 20 4.1.2 Effect of stirring speed on rice bran hydrolysis 21 4.1.3 Effect of sulfuric acid concentration on rice bran hydrolysis 22 4.1.4 Effect of hydrolysis time using 2% sulfuric acid 23 4.2 Application of rice bran hydrolysate (RBH) 24 4.2.1 Co-culture of Y. lipolytica and L. starkeyi using DRBH as fermentation medium 24 4.2.2 Co-culture of L. starkeyi and C. vulgaris using DRBH as fermentation medium 25 Chapter 5 28 Conclusion 28 References 29 Appendix 36

    Abreu, A.P., Fernandes, B., Vicente, A.A., Teixeira, J., and Dragone, G., 2012. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresource Technology, 118, 61-66.
    Agarwal, A.K., 2007. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science, 33(3), 233-271.
    Ageitos, J.M., Vallejo, J.A., Veiga-Crespo, P., and Villa, T.G., 2011. Oily yeasts as oleaginous cell factories. Applied Microbiology and Biotechnology, 90(4), 1219-1227.
    Angerbauer, C., Siebenhofer, M., Mittelbach, M., and Guebitz, G.M., 2008. Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresource Technology, 99(8), 3051-3056.
    Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J.L., Molina-Jouve, C., and Nicaud, J.M., 2009. Yarrowia lipolytica as a model for bio-oil production. Progress in Lipid Research, 48(6), 375-387.
    Bernardin, F.E., 1985. Experimental design and testing of adsorption and adsorbates. Adsorption Technology, 1-35.
    De Castro, M.L., and Priego-Capote, F., 2010. Soxhlet extraction: Past and present panacea. Journal of Chromatography A, 1217(16), 2383-2389.
    Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A.T., and Smith, F., 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356.

    Ebrahimian, A., Kariminia, H.R., and Vosoughi, M., 2014. Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater. Renewable Energy, 71, 502-508.
    Escobar, J.C., Lora, E.S., Venturini, O.J., Yáñez, E.E., Castillo, E.F., and Almazan, O., 2009. Biofuels: environment, technology and food security. Renewable and Sustainable Energy Reviews, 13(6), 1275-1287.
    Fox, C.R., and Kennedy, D.C., 1985. Conceptual design of adsorption systems. In: Slejko, F.L. (Ed.), Adsorption Technology: A Step-by-Step Approach to Process Evaluation and Application, pp. 91-166, Basel: Dekker, New York.
    Fox, C.R., 1985. Industrial wastewater control and recovery of organic chemicals by adsorption. In: Slejko, F.L. (Ed.), Adsorption Technology: A Step-by-Step Approach to Process Evaluation and Application, pp. 167-183, Basel: Dekker, New York.
    Garcí, M.C.C., Sevilla, J.M.F., Fernández, F.G.A., Grima, E.M., and Camacho, F.G., 2000. Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. Journal of Applied Phycology, 12, 239-248.
    Gong, C.S., Chen, C.S., and Chen, L.F., 1993. Pretreatment of sugar cane bagasse hemicellulose hydrolyzate for ethanol production by yeast. Applied Biochemistry and Biotechnology, 39(1), 83-88.
    Gurgel, P.V., Mancilha, I.M., Pecanha, R.P., and Siqueira, J.F.M., 1995. Xylitol recovery from fermented sugarcane bagasse hydrolyzate. Bioresource Technology, 52(3), 219-223.
    Hu, C., Zhao, X., Zhao, J., Wu, S., and Zhao, Z.K., 2009. Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresource Technology, 100(20), 4843-4847.
    Huang, C.F., Jiang, Y.F., Guo, G.L., and Hwang, W.S., 2011. Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresource Technology, 102(3), 3322-3329.
    Huang, L., Zhang, B., Gao, B., and Sun, G., 2011. Application of fishmeal wastewater as a potential low-cost medium for lipid production by Lipomyces starkeyi HL. Environmental Technology, 32(16), 1975-1981.
    Jham, G.N., Teles, F.F.F., and Campos, L.G., 1982. Use of aqueous HCI/MeOH as esterification reagent for analysis of fatty acids derived from soybean lipids. Journal of the American Oil Chemists Society, 59(3), 132-133.
    Jones, C.S., and Mayfield, S.P., 2012. Algae biofuels: versatility for the future of bioenergy. Current Opinion in Biotechnology, 23(3), 346-351.
    Jones, J.L., and Semrau, K.T., 1984. Wood hydrolysis for ethanol production—previous experience and the economics of selected processes. Biomass, 5(2), 109-135.
    Juliano, B.O., 1985. Rice: chemistry and technology, American Association of Cereal Chemists, Minnesota.
    Kahlon, T.S., 2009. Rice bran: production, composition, functionality and food applications, physiological benefits, p. 305-322, CRC Press, U.S.A.
    Larsson, S., Reimann, A., Nilvebrant, N.O., and Jönsson, L.J., 1999. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Applied Biochemistry and Biotechnology, 77(1-3), 91-103.
    Lee, S.J., Yoon, B.D., and Oh, H.M., 1998. Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnology Techniques, 12(7), 553-556.
    Lee, Y.K., 2004. Algal Nutrition‒Heterotrophic Carbon Nutrition. In: Richmond, A. (Ed.), Handbook of microalgal culture: biotechnology and applied phycology, Blackwell Publishing, U.S.A, pp. 116-124.
    Li, Q., Du, W., and Liu, D., 2008. Perspectives of microbial oils for biodiesel production. Applied Microbiology and Biotechnology, 80(5), 749-756.
    Liu, S.J., Yang, W.B., and Shi, A.H., 2000. Screening of the high lipid production strains and studies on its flask culture conditions. Microbiology, 27(2), 93–97.
    Liu, Y., Wang, Y., Liu, H., and Zhang, J.A., 2015. Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy. Bioresource Technology, 180, 32-39.
    Mainul, H., Philippe, J.B., Louis, M.G., and Alain, P., 1996. Influence of Nitrogen and Iron Limitations on Lipid Production by Cryptococcus curvatus Grown in Batch and Fed-batch Culture. Process Biochem, 31(4), 355–361.
    Manirakiza, P., Covaci, A., and Schepens, P., 2001. Comparative study on total lipid determination using Soxhlet, Roese-Gottlieb, Bligh & Dyer, and modified Bligh & Dyer extraction methods. Journal of Food Composition and Analysis, 14(1), 93-100.
    Matsakas, L., Sterioti, A.A., Rova, U., and Christakopoulos, P., 2014. Use of dried sweet sorghum for the efficient production of lipids by the yeast Lipomyces starkeyi CBS 1807. Industrial Crops and Products, 62, 367-372.
    Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., and Xian, M., 2009. Biodiesel production from oleaginous microorganisms. Renewable Energy, 34(1), 1-5.
    Miao, X., and Wu, Q., 2004. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of Biotechnology, 110(1), 85-93.
    Milano, J., Ong, H.C., Masjuki, H.H., Chong, W.T., Lam, M.K., Loh, P.K., and Vellayan, V., 2016. Microalgae biofuels as an alternative to fossil fuel for power generation. Renewable and Sustainable Energy Reviews, 58, 180-197.
    Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428.
    Mitra, D., van Leeuwen, J.H., and Lamsal, B., 2012. Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Research, 1(1), 40-48.
    Mubarak, M., Shaija, A., and Suchithra, T.V., 2015. A review on the extraction of lipid from microalgae for biodiesel production. Algal Research, 7, 117-123.
    Nakamura, Y., Sawada, T., and Komatsu, A., 2002. Ethanol production from raw starch by a recombinant yeast having saccharification and fermentation activities. Journal of Chemical Technology and Biotechnology, 77(10), 1101-1106.
    Palmqvist, E., and Hahn-Hägerdal, B., 2000. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technology, 74(1), 17-24.
    Papanikolaou, S., and Aggelis, G., 2011. Lipids of oleaginous yeasts. Part II: Technology and potential applications. European Journal of Lipid Science and Technology, 113(8), 1052-1073.
    Papanikolaou, S., Galiotou-Panayotou, M., Chevalot, I., Komaitis, M., Marc, I., and Aggelis, G., 2006. Influence of glucose and saturated free-fatty acid mixtures on citric acid and lipid production by Yarrowia lipolytica. Current Microbiology, 52(2), 134-142.
    Persson, P., Andersson, J., Gorton, L., Larsson, S., Nilvebrant, N.O., and Jönsson, L.J., 2002. Effect of different forms of alkali treatment on specific fermentation inhibitors and on the fermentability of lignocellulose hydrolysates for production of fuel ethanol. Journal of Agricultural and Food Chemistry, 50(19), 5318-5325.
    Sanderson, K., 2011. Lignocellulose: a chewy problem. Nature, 474(7352), S12-S14.
    Shi, A.H., Gu, J.S., Liu, S.J., and Ma, Y.J., 1997. Screening high oil yield yeast strains, fermentation conditions optimization and fat composition analysis. China Brewing, 4, 10–13.
    Silva, S.S., Felipe, M.G.A., Vitolo, M., El Bassam, N., Behl, R.K., Prochnow, B., and fuer Landwirtschaft, B., 1998. Xylitol production by Candida guilliermondii FTI 20037 grown in pretreated sugar cane bagasse hydrolysate, pp.1116–1119.
    Smedes, F., and k Askland, T., 1999. Revisiting the development of the Bligh and Dyer total lipid determination method. Marine Pollution Bulletin, 38(3), 193-201.
    Taherzadeh, M.J., and Karimi, K., 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences, 9(9), 1621-1651.
    Tsigie, Y.A., Wang, C.Y., Kasim, N.S., Diem, Q.D., Huynh, L.H., Ho, Q.P., and Ju, Y.H., 2012. Oil production from Yarrowia lipolytica Po1g using rice bran hydrolysate. Journal of Biomedicine and Biotechnology, 2012, 1-10.
    Vyas, A.P., Verma, J.L., and Subrahmanyam, N., 2010. A review on FAME production processes. Fuel, 89(1), 1-9.
    Wang, L., and Weller, C.L., 2006. Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17(6), 300-312.
    Xiong, W., Gao, C., Yan, D., Wu, C., and Wu, Q., 2010. Double CO2 fixation in photosynthesis–fermentation model enhances algal lipid synthesis for biodiesel production. Bioresource Technology, 101(7), 2287-2293.
    Yu, X., Zheng, Y., Dorgan, K.M., and Chen, S., 2011. Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresource Technology, 102(10), 6134-6140.
    Zhang, Z., Ji, H., Gong, G., Zhang, X., and Tan, T., 2014. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields. Bioresource Technology, 164, 93-99.
    Zhao, G., Yu, J., Jiang, F., Zhang, X., and Tan, T., 2012. The effect of different trophic modes on lipid accumulation of Scenedesmus quadricauda. Bioresource Technology, 114, 466-471.

    QR CODE