簡易檢索 / 詳目顯示

研究生: 謝定洲
Ting-chou Hsieh
論文名稱: 粗細鐵粉混合比例對壓粉磁蕊磁性質之影響
Effects of bimodal particle size distribution on the magnetic performance for compressed powder core
指導教授: 林舜天
Shun-Tian Lin  
口試委員: 周賢鎧
Shyan-kay Jou
黃坤祥
Kuen-Shyang Hwang
林寬泓
Kuan-Hong Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 66
中文關鍵詞: 磁通密度鐵損磷化處理壓粉磁蕊電阻率渦電流損失退火處理交流導磁率磁滯損失
外文關鍵詞: compressed powder core, iron powder, magnetic flux, phosphate treatment, anneal treatment
相關次數: 點閱:259下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

AC軟磁性材料近幾年來已被應用在電子及汽車零件上,本研究將藉由粗細鐵粉的混合,且在鐵粉表面上生成一層具有電氣絕緣效果的皮膜層,以維持基材的高磁通密度並降低能量轉換過程中的鐵損為本研究目標。實驗結果顯示鐵粉經磷化處裡90s且磁蕊經200℃退火處理下所製成的壓粉磁蕊中,細粉與粗粉的比例為2:1時所製成之壓粉磁蕊最符合本研究之要求。此外,磷化處理後鐵粉表面所生成皮膜結構為 Zn3(PO4)2 ,此一絕緣層不僅使鐵材保有優越的磁通密度而且可以提高壓粉磁蕊的電阻率,提高頻率使用範圍並降低渦電流損失。另一方面,藉由退火處理可提升磁通密度,但退火溫度超過200℃時,由於黏結劑的損耗因而造成電阻率降低,因而有可能造成磁通密度為10kG時的鐵損在測試頻率為200kHz內大幅度的提升且會造成磁通密度為10kG下的交流導磁率下降。在相同磷化時間、相同退火溫度,但不同比例的粗細鐵粉所製成的壓粉磁蕊中,雖然細粉含量的增加會使電阻率提升並抑制渦電流損失的產生,但隨著細粉含量的增加磁滯損失也隨之上升。


In recent years, remarkable advances have been made in AC soft magnetic materials of compressed powder cores for electronic and automotive applications. By mixing iron powders of two different particle sizes, the goals of this study are to achieve high magnetic fluxes and reduce total iron losses of pure iron powders coated with insulated layers. The results indicate that the compressed powder cores conform to the study goals as the best magnetic performances were achieved when the ratio of fine iron powder and coarse iron powder was 2:1. With a phosphate treatment, the structure of the insulated layer coated on iron particle surface was Zn3(PO4)2. It could not only maintain the magnetic fluxes of pure iron, but also enhance the electrical resistivity of compressed cores by reducing the eddy current loss, which allows a wider frequency range of applications. In addition, annealing treatment after compression could raise magnetic fluxes, but an annealing temperature higher than 200℃ caused the decomposition of binder, resulting in decreased electrical resistivity. For the compressed powder cores with same phosphate treatment time and annealing temperature, the eddy current loss decreased, due to the increase in electrical resistivity, while the hysteresis loss increased with increase in the content of fine iron powder.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 導論 1 1-1前言 1 1-2 研究動機 2 第二章 基礎理論 3 2-1 磁性物質之種類 3 2-2 磁化曲線 5 2-3 鐵磁性材料 7 2-3-1 鐵磁性材料因素 7 2-3-2 鐵磁性材料分類 8 2-4 軟磁材料 9 2-4-1 軟磁材料的分類 9 2-4-2 軟磁性材料比較 10 2-5 功率轉換能量損失 14 2-6 磷化處理 17 2-6-1 絕緣層比較 17 2-6-2 磷化處理 18 2-7 軟質材料應用 20 第三章 實驗流程 21 3-1實驗流程 21 3-2實驗材料 25 3-3 性質量測及結構分析 28 第四章 結果與討論 33 4-1 磷化處理 33 4-2 磷化時間影響 38 4-3 退火理溫度影響 43 4-3-1 退火溫度對磁性質影響 43 4-3-2 退火溫度對電阻的影響 45 4-4 粗、細粉比例影響 46 4-4-1 粗、細鐵粉混合比例對機械性質影響 46 4-4-2 粗、細粉比例對磁性質影響 48 4-4-3 實驗結果比較 55 4-5 實驗結果與市場常見磁蕊比較 56 第五章 結論 58 第六章 參考文獻 60 附錄A 64 附錄B 65 附錄C 66

【1】 蘇英源,郭金國 “粉末冶金學” 全華科技圖書股份有限公司,民國90年4月出版
【2】 張煦,李學養.合譯 “磁性物理學” 聯經公司出版,1981年 6月出版
【3】 陳其亮,“錳鋅鐵氧磁體磁熱耦合問題之分析”,私立中原大學機械工程學系碩士學位論文,桃園縣, 2001
【4】 C. Lall, “Soft Magnetism Fundamentals for Powder Metallurgy and Metal Injection Molding” Metal Powder Industries Federation, September, 1992
【5】 http://web.nchu.edu.tw/~jillc/me/Ch18%20-%20Magnetic%20M
aterials.pdf
【6】 T. Meada, H. Toyada, N. Igarshi, K. Mimura, T. Nishioka, A. Ikegasa, “Development of Super Low Iron-Ioss P/M Soft Magnetic Material” Sei Technical Review, No. 60, June, 2005, p. 3-9
【7】 K. Gheisari, S. Tavadpour, H. Shokrollahi, B. Hashemi, “Magnetic losses of the soft magnetic composites consisting of iron and Ni-Zn ferrite” Journal of Magnetism and Magnetic Material, No. 320, 2008, p. 1544-1548
【8】 G. Uozumi, M. Watanabe, R. Nakayama, K. Igarashi, K. Morimoto, “Properties of Soft magnetic Composite with Evaporated MgO Insulation Coating for low Iron loss” Materials Science Forum, Vols. 534-536, 2007, p. 1361-1364
【9】 汪建民,“ 粉末冶金技術手冊”中華民國產業科技發展協
會,中華民國粉末冶金協會出版,1984年8月
【10】 J. Cros, A. J. Perin*, P. Viarouge, “Soft Magnetic Composites for Electromagnetic Components in Lighting Applications” IEEE, 2002, p. 342-347
【11】 Y. D. Zhang, Z. W. Lan, Z. Yu, “ The Influence of Nb2O5 Additive on the Microstructure and Properties of High Frequency MnZn Power Ferrite” 維普資訊, 磁性材料及器件, 2OO3年lo月
【12】 S. Yamada, E. Otsuki, “Analysis of Eddy Current Loss and Magnetization in Mn-Zn Ferrites for powder supplies” J. Magn. Soc. Japan, vol. 23, No. 1-2, 1999, p.640-642
【13】 Hideo. Saotome, Yo. Sakaki, “Iron Loss Analysis of Mn-Zn Ferrite Cores”, IEEE Trans On Magnetism, Vol. 33, No. 1, January, 1997, p. 728-734
【14】 http://www.atmix.co.jp/eng/E_funmatsu_jisei.html
【15】 S. Tajima, T. Hattori, M. Kondon, H. Kishimoto, M. Sugiyama, T. Kikko, “Properties of High-Density Magnetic Composite Fabricated From Iron Powder Coated With a New Type Phosphate Insulator” IEEE Transactions On Magnetics, Vol. 41, No. 10, October, 2005, p. 3280-3282
【16】 Y. Shimada, H. Oyama, T. Nishioka, and A. Yamakawa, “Development of a high-magnetic performance P/M soft magnetic materials,” Advances in Powder Metallurgy & Particulate Materials, 2002, p. 14-39–14-52
【17】 M. Kondoh, H. Okajima, “High density powder compaction using die wall lubrication,” Advances in Powder Metallurgy & Particulate Materials, 2002, p. 3-74–3-54
【18】 G. A. Govor, V. V. Mikhnevich, “Soft-Magnetic Composites from
Insulated Iron Powder and Their Potential Technological
” ISSN 0020-1685, Inorganic Materials, Vol. 43, No. 7, 2007, p.
711–713
【19】 http://140.130.91.3/~exp1_phys/stuff/exp11.doc
【20】 Bayramli, E., Gölgelioğlu, Ö. and Ertan, H.B., "Powder metal development for electrical motor applications," Journal of Mechanical Working Technology, Vol. 161, No. 1-2, April, 2005, p. 83-88.
【21】 C. Leia, Y. Zhoua, X. Y. Gaoa, W. Dinga, Y. Caoa, H. Choib, J. Wonb, “Fabrication of a solenoid-type inductor with Fe-based soft magnetic core” Journal of Magnetism and Magnetic Materials, No. 308, 2007, p. 284–288
【22】 Y. K. Lee, Y. B. Kim, K. K. Jee, G. B. Choi, “High frequency
magnetic properties of Fe-based nanocrystalline alloy powder
cores” phys. stat. sol. (a) 204, No. 12, 2007, p. 4100-4103
【23】 G. Oliver, “Advances in powder Metallurgy of Soft Magnetic
Materials” IEEE Transactions On Magnetics, Vol. 31, No. 6,
November, 1995, p. 3982-3984
【24】 http://www.wipo.int/pctdb/en/wo.jsp?WO=2005%2F023464&IA =SE2004001296&DISPLAY=DESC
【25】 Gay, D.E., “High Performance Microcapsulated Powder for Various P/M Application”, Int. J. Powder Metal., Vol. 32, 1996, p. 13–24
【26】 U. Engstrom P. Jansson, "Metal powders for the production of
soft magnetic parts” Paper presented at the International Powder Metallurgy Group Meeting at Eastbourne, England, October 1984
【27】 P. Jasson, M. Persson “Soft Magnetic Composite Material-Use
for Electrical Machines” Electrical Machine and Drives,
Conference Publication, No. 412. September, 1995, p. 242-246
【28】 www.pmgsinter.com/downloads/Soft_Magnetic_070830.pdf
【29】 http://www.stzcjg.com/doc/lsy.doc
【30】 http://tw.knowledge.yahoo.com/question/question?qid=1008071
602445
【31】 L. Hultman, M. Persson, P. Engdahl, “Soft Magnetic Composites For Advanced Machine Design” Presented at PMAsia2005, April, 2005
【32】 何水校,”軟磁鐵氧體材料的應用與市場”磁性材料及器件,                                   
    Vol. 29, No. 1, 1997年8月
【33】 S. Yoshiyuk, N. Takao, I. Akihiko, ” Development of high- Performance P/M soft magnetic material” Journal of the Japan Society of Powder and Powder Metallurgy, v 53, n 8, August, 2006, p 686-695
【34】 S. T. Lin, “Control of structure integrity and microstructure
evolution in powder injection molded alumina through the
interaction between binder and powder” Rensselaer Polytechnic
Institute Troy, New York, January, 1991
【35】 Yoon B. Kim, D.H. Jang, H.K. Seok, K. Y. Kima “Fabrication of
Fe–Si–B based amorphous powder cores by cold pressing and
their magnetic properties” Materials Science and Engineering A
449–451 (2007) 389–393.

QR CODE