簡易檢索 / 詳目顯示

研究生: 廖俊翔
Chun-Hsiang Liao
論文名稱: 適用於不同色溫照明環境之眩光評價模型與可攜式檢測系統開發
Glare evaluation model and its portable inspection system development for different CCT LED lights
指導教授: 李宗憲
Tsung-Xian Lee
孫沛立
Pei-Li Sun
口試委員: 孫慶成
Ching-Cherng Sun
陳怡君
Yi-Chun Chen
陳鴻興
Hung-Shin Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 126
中文關鍵詞: LED照明室內照明不舒適眩光色溫可攜式眩光檢測系統
外文關鍵詞: UGR, Portable smart inspection system
相關次數: 點閱:262下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著照明產品的快速發展與多樣化,各式各樣的新興光源與照明燈具在我們的生活中隨處可見。然而在照明設計上,雖然有多種人工光源可供選擇與使用,但也相對更加容易產生不舒適眩光。現階段在眩光感受上通常僅考量光源的輝度以及照明場景中的明暗對比,鮮少探討光源與環境色溫對眩光程度的影響。為了量化照明場景中色溫變化對眩光的影響,以符合人類的心理層面反應及人眼感受,本研究將建立考量相關色溫之眩光評價模型。同時,為減少評估成本以及提升評估眩光之方便性,本研究提出以可攜式眩光檢測系統對環境中之眩光進行評估之方法。
      研究初期透過人因實驗來了解可變色溫之燈具對眩光程度的影響,初步結果顯示,刺激光源色溫的改變的確會對人眼產生一定程度的眩光影響。接著探討光源色溫和環境色溫之改變對不舒適眩光之影響,並同時考量不同視角與色溫改變所帶來的變化。實驗結果發現,受測者們對於環境色溫的改變存在著兩種不同的眩光感受。第一群受測者對環境色溫與眩光程度呈正比關係,即環境色溫越高,眩光感受越為強烈。而第二群受測者對環境色溫與視覺舒適度則呈現反比關係,環境色溫越高,眩光程度越低,推測造成此差別的原因在於色對比的產生。本研究根據所有實驗的結果改良CIE統一眩光指數,並分別針對兩群受測者提出適用於現階段照明環境之眩光評價模型。在驗證場景中,針對兩群受測者分別所建立的改良眩光評價模型在眩光預測與視覺舒適度之R2可達0.84和0.9,顯示改良後眩光評價模型的確能有效預測不同色溫下之眩光程度。
      最後根據實驗評價所建立之眩光評價模型,並透過在智慧型手機平台上進行影像處理與分析,發展一套可攜式眩光檢測系統。手機相機在進行色彩校正後其輝度誤差為4.77%,而在色溫部分,其ΔCCT僅76.5 K。在驗證場景部分,檢測系統在計算參數輝度、色溫以及立體角的平均誤差分別為4.03%、114K和4.18%,其結果顯示檢測系統在眩光計算之準確度是相當具有可靠性的。利用此套眩光檢測系統可提供快速且方便的照明環境檢測及環境眩光指數評估,未來將能應用於智慧照明的世代。


    Due to the diversity of light fixture in lighting application, there is a rising concern that different kinds of light source may easily cause various degree of glare to human especially discomfort glare. Discomfort glare may cause people to look away from a bright light source and even to have painful sensation in seeing a task.
    With the development of lighting fixture, more levels of correlated color temperature (CCT) of LEDs-based luminaries may be used in interior lighting. Different color temperature of luminaries may cause different degrees of discomfort glare. Therefore, we intend to develop an evaluation model to predict the visual comfort with different CCT in interior lighting based on the foundation of Unified Glare Rating (UGR). Furthermore, a portable and smart system for UGR inspection is also developed to obtain the status of various lighting scenes and evaluation UGR conveniently for lighting environment.
    In this study, the influence of stimulus CCT, surround CCT, luminance and viewing angle on discomfort glare would be re-investigated. According to the results of psychological experiments, we established two new UGR models for improving prediction on observer’s discomfort glare. The correlation R2 between two different evaluation model and visual comfort were up to 0.84 and 0.9 in verification scenes. The results show improved evaluation model can really predict the degree of glare under different color temperatures.
    Finally, we established glare inspection system based on the smart phone and evaluation model by image processing. The luminance measurement error of phone camera after color correction is 4.77%, and the ΔCCT is only 76.5 K. In verification scenes, the parameters of the luminance, color temperature and solid angle calculated by inspection system were 4.03%, 114 K and 4.18%. The results show that the prediction of discomfort glare by using inspection system have high reliability. With the establishment of discomfort glare inspection system, it can provide fast and convenient lighting environmental testing and environmental assessment. And we wish this inspection system can also be applied for smart lighting in next generation.

    中文摘要 ABSTRACT 誌謝 目錄 圖目錄 表目錄 Chapter 1、 緒論 1.1 研究背景及動機 1.2 論文大綱 Chapter 2、 文獻探討 2.1 眩光相關研究 2.2 CIE統一眩光指數應用於室內照明 2.3 相機感知亮度與色彩特性 Chapter 3、 建立考量相關色溫之眩光評價模型 3.1 實驗一:影響不舒適眩光關鍵因子之研究 3.1.1 實驗設定與環境配置 3.1.2 實驗設備 3.1.3 實驗流程 3.1.4 資料分析與討論 3.1.5 小結 3.2 實驗二:光源色溫與環境色溫對視覺舒適度之研究 3.2.1 實驗設定與環境配置 3.2.2 實驗設備 3.2.3 實驗流程 3.2.4 資料分析與討論 3.2.5 小結 3.3 實驗三:視角與色溫之交互作用對視覺舒適度之研究 3.3.1 實驗設定與環境配置 3.3.2 實驗流程 3.3.3 資料分析與討論 3.3.4 小結 3.4 實驗四:多刺激光源對視覺舒適度之研究 3.4.1 實驗設定與環境配置 3.4.2 實驗流程 3.4.3 資料分析與討論 3.4.4 小結 3.5 眩光評價模型建立 3.5.1 評價模型建立 3.5.2 驗證模型及模型確立 Chapter 4、 可攜式檢測系統之建立 4.1 色彩校正 4.1.1 校正流程 4.1.2 實驗設備 4.1.3 多項式迴歸 4.1.4 校正結果 4.2 可攜式檢測系統之建立 4.2.1 檢測系統撰寫平台與流程 4.2.2 多重曝光影像擷取光源與背景之輝度和色溫 4.2.3 Guth指數計算 4.2.4 立體角計算 4.3 檢測系統之驗證 4.3.1 場景驗證 89 4.3.2 影像分割塊數對眩光指數之影響 Chapter 5、 結論與建議 6.1 結論 6.2 建議與未來展望 參考文獻 98 附錄ㄧ、掌上型LED光譜計 附錄二、全面式(CCD式)輝度色度量測儀 附錄三、手持式輝度計 附錄四、分光光度計 107 附錄五、可調輝度與色溫之LED天花板燈 附錄六、可調輝度與色溫之LED燈泡 附錄七、位置參數表(Guth position index) 附錄八、LED球燈泡

    [1] W. S. Stiles, “Discussion on disability glare” presented at the CIE meeting, Scheveningen, The Hague (1939).
    [2] J. J. Vos, “On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation,” Clin. Exp. Optom. Vol. 86(6), 363–370 (2003).
    [3] R. B. Gibbons and C. J. Edwards, “A review of disability and discomfort glare research and future direction,” presented at the 18th Biennial TRB Visibility Symposium, College Station TX, United States, 17–19 (2007).
    [4] M. S. Rea, IESNA Lighting Handbook: Reference and Application, Illuminating Engineering Society (2000).
    [5] CIE Publication No. 17.4: International Lighting Vocabulary, 4th ed., 50(845) (1987).
    [6] P. Sassi, Strategies for Sustainable Architecture, Taylor & Francis, Chap. 3 (2006).
    [7] D. Fisher, “Discomfort glare in interiors” presented at the First International Symposium on Glare, Orlando, Florida, New York, 24–25 (1991).
    [8] J. B. deBoer and D. A. Schreuder, “Glare as a criterion for quality in street lighting,” Trans.Illum.Eng.Soc. Vol. 32, 117–135 (1967).
    [9] H. J. Schmidt-Clausen and J. T. H. Bindels, “Assessment of discomfort glare in motor vehicle lighting,” Lighting Res. Tech. Vol. 6(2), 79–88 (1974).
    [10] JD Bullough, JA Brons, R. Qi and MS Rea, “Predicting discomfort glare from outdoor lighting installations,” Lighting Res. Tech. Vol. 40(3), 225–242 (2008).
    [11] J. D. Bullough, K. Sweater-Hickcox, and N. Narendran, “A method for estimating discomfort glare from exterior lighting system,” Alliance for Solid-State Illumination Systems and Technologies Vol. 9, 1–7 (2011).
    [12] J. D. Bullough and K. Sweater-Hickcox, “Interactions among light source luminance, illuminance and size on discomfort glare,” SAE Int. J. Passeng. Cars-Mech. Syst. Vol. 5, 199–202 (2012).
    [13] Y. Lin, Y. Liu, Y. Sun, X. Zhu, J. Lai, and I. Heynderickx, “Model predicting discomfort glare caused by LED road lights, ” Optics Express, Vol. 22, No. 15 (2014).
    [14] M.W. Lin, P.H. Hsieh, E.C. Chang, and Y.C. Chen, “Flicker-glare and visual-comfort assessments of light emitting diode billboards, ” Applied Optics, Vol. 53, No. 22 (2014).
    [15] Y.Y. Huang and M. Menozzi, “Effects of discomfort glare on performance in attending peripheral visual information in displays,” Displays, Vol. 35, 240–246 (2014)
    [16] Einhorn HD, “A new method for the assessment of discomfort glare,” Lighting Res. Tech., Vol. 1(4):235–247 (1969).
    [17] R.G. Hopkinson, “Glare from daytighting in buildings,” Applied Ergonomics, Vol. 3.4, 206-215 (1972).
    [18] Einhorn HD, “Discomfort glare: a formula to bridge differences,” Lighting Res. Tech., Vol. 11(2):90–94 (1979).
    [19] P. Chauvel, J.B. Collins, R. Dogniaux and J. Longmore, “Glare from windows: current views of the problem,” Lighting Res. Tech., 14: 31 (1982)
    [20] CIE 117, “Discomfort glare in interior lighting,” (1995).
    [21] M. Velds, “User acceptance studies to evaluate discomfort glare in daylit rooms,” Solar Energy Vol. 73, No. 2, 95–103 (2002).
    [22] Ali A. Nazzal, “A new evaluation method for daylight discomfort glare,” International Journal of Industrial Ergonomics Vol. 35, 295–306 (2005).
    [23] Werner K.E. Osterhaus, “Discomfort glare assessment and prevention for daylight applications in office environments,” Solar Energy Vol. 79, 140–158 (2005).
    [24] J. Wienold and J. Christoffersen, “Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras,” Energy and Buildings Vol. 38, 743–757 (2006).
    [25] Y. Nakamura, S. Kanaya and Y. Miki, “Appropriate residential lighting environment with various light sources and various installations,” CIE Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (2009).
    [26] JA Jakubiec and CF Reinhart, “The 'adaptive zone' - A concept for assessing discomfort glare throughout daylit spaces,” Lighting Res. Tech., 44–149 (2012).
    [27] H. Higashi, S. Koga, and T. Kotani, “The development of evaluation for discomfort glare in LED lighting of indoor work place: the effect of the luminance distribution of luminous parts on subjective evaluation” in Proceedings of CIE Centenary Conference: Toward a New Century of Light, 648–656 (2013).
    [28] S. Koga, H. Higashi, and T. Kotani, “The development of evaluation of discomfort glare in LED lighting of indoor work place: the modification of G-classification using luminance distribution of luminous parts” in Proceedings of CIE Centenary Conference: Toward a New Century of Light, 657–662 (2013).
    [29] L.M. Geerdinck, J.R. Van Gheluwe and M.C.J.M. Vissenberg, “Discomfort glare perception of non-uniform light sources in an office setting,” Journal of Environmental Psychology Vol.39, 5-13 (2014).
    [30] T. Kasahara, D. Aizawa, T. Irikura, T. Moriyama, M. Toda, and M. Iwamoto, “Discomfort glare caused by white LED light sources,” Journal of Light and Visual Environment (Japan) Vol. 30(2), 95–103 (2006).
    [31] W. Kim and J.T. Kim, “Effect of Background Luminance on Discomfort Glare in Relation to the Glare Source Size,” Indoor and Built Environment, Vol. 19, 175 (2010).
    [32] T Tashiro, S Kawanobe, T Kimura-Minoda, S Kohko, T Ishikawa and M Ayama, “Discomfort glare for white LED light sources with different spatial arrangements,” Lighting Res. Tech., published online (2014).
    [33] M. Sivak, B. Schoettle, T. Mionda, and M. J. Flannagan, “Blue content of LED headlamps and discomfort glare” in Transportation Research Institute Report UMTRI-2005–2 (2005).
    [34] T. Kimura-Minoda and M. Ayama, “Evaluation of discomfort glare from colour LEDs and its correlation with individual variations in brightness sensitivity,” Color Res. Appl. Vol. 36(4), 286–294 (2011).
    [35] K. Sweater Hickcox, N. Narendran, J.D. Bullough, J.P. Freyssinier, “Effect of different coloured luminous surrounds on LED discomfort glare perception,” Lighting Res. Tech., published online (2013).
    [36] M. Wei, K. W. Houser, B. Orland, D. H. Lang, N. Ram, M. J. Sliwinski and M.Bose, “Field study of office worker responses to fluorescent lighting of different CCT and lumen output,” Journal of Environmental Psychology Vol.39, 62-76 (2014).
    [37] F. Martínez-Verdú, J. Pujol and P. Capilla, “Characterization of a digital camera as an absolute tristimulus colorimeter,” Journal of Imaging Science and Technology, Vol. 47, Number 4 (2003).
    [38] D. Wüllera and H. Gabeleb, “The usage of digital cameras as luminance meters,” SPIE, Vol. 6502, 65020U (2007).
    [39] K. Fliegel and J. Havlin, “Imaging photometer with non-professional digital camera,” SPIE, Vol. 7443, 74431Q (2009).
    [40] P. D. Hiscocks and P. Eng, “Measuring Luminance with a Digital Camera,” (2011).
    [41] Garcia-Hansen V, Cowley M.J, Isoardi G and Smith S.S, “Testing the accuracy of luminance maps acquired by smart phone cameras,” In Proceedings of the CIE Centenary Conference "Towards a New Century of Light", Commission Internationale l’Eclairage, Paris, 951-955 (2013).
    [42] U. J. Blaszczak, “Discomfort glare measurement,” SPIE, Vol. 7502, 75022I (2009).
    [43] S.W. Hsu, C.H. Chen, Y.D. Jiaan, “Measurement of UGR of LED Light by a DSLR Colorimeter,” SPIE, Vol. 8484, 848415 (2012).
    [44] P.L. Sun, H.C. Li and P. Green, “Evaluating CIE Unified Glare Rating of a Scene Using a Panoramic Camera,” Proc. of The International Display Workshops (IDW), Vol. 20, 1143-1146 (2013).
    [45] D. Sawicki, A. Wolska, “Algorithm of HDR image preparation for discomfort glare assessment,” Przeglad Elektrotechniczny, ISSN 0033-2097, R.89 NR 2a (2013).
    [46] G. Hong, M. Ronnier Luo and P. A. Rhodes, “A Study of Digital Camera Colorimetric Characterization Based on Polynomial Modeling,” Color research and application, Vol. 26, Number 1 (2001).
    [47] J.S. Lin, H.S. Wei, K.H. Liao, H.Y Ma, H.Y. Lee and Y. Takeuchi, “Detecting two-dimensional luminance distribution of planar light source by use of neural network and digital camera,” Journal of the Chinese Institute of Engineers, Vol. 33, No. 5, pp. 769-773 (2010).
    [48] 劉憲勳, “利用類神經網路從CCD照相機之照片去獲得發光二極體二維光強度分佈,”國立中央大學碩士論文 (2004)。
    [49] C. J. Bartleson And E. J. Bseneman, “Brightness perception in complex fields,” Journal of the Optical Society of America, Vol. 57, number 7 (1967).
    [50] J. C. Stevens and S. S. Stevens, “Brightness function: effects of adaptation,” Journal of the Optical Society of America, Vol. 53, number 3 (1963).
    [51] M. Luckiesh and S. K. Guth, “Brightnesses in visual field at borderline between comfort and discomfort(BCD),” National Technical Conference of the Illuminating Engineering Society, 20-23 (1949).
    [52] C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Research and Application, Vol. 17(2): 142-144(1992).
    [53] 李宏中, “利用數位相機評估照明環境的統一眩光指數與演色指數,” 國立台灣科技大學碩士論文 (2012)
    [54] M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, A.R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part 1. LUTCHI colour appearance data,” Color Res. Appl. Vol. 16, 166-180 (1991).

    QR CODE