簡易檢索 / 詳目顯示

研究生: 曾奕嵐
I-lan Tseng
論文名稱: 反應式離子束濺鍍法沉積之氧化銀(AgxO)薄膜熱穩定性探討
Thermal stability of silver oxide (AgxO) thin films prepared by reactive ion beam sputter deposition
指導教授: 趙良君
Liang -Chiun Chao
口試委員: 黃鶯聲
Ying-Sheng Huang
李奎毅
Kuei-Yi Lee
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 69
中文關鍵詞: 氧化銀離子束濺鍍法
外文關鍵詞: silver oxide, ion beam sputter
相關次數: 點閱:374下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此實驗以反應式離子束濺鍍法成長氧化銀薄膜,採用毛細式離子源(6∼8 kV、100∼500 uA)及陽極層離子源 (0.7 kV、13.5 mA) ,同時通入氬氣及氧氣,氬氣為濺鍍氣體,氧氣為反應氣體,調變氬/氧流量比。實驗結果顯示以毛細式離子源所沈積之薄膜,不論沈積溫度或氬/氧流量比,所沉積薄膜皆為銀,並未形成氧化銀,推測原因為濺射出粒子動能較高,不易形成氧化銀。以陽極層離子源在室溫下所沉積之薄膜,當氬氧流量比為1:1、 1:2、1:3、1:4及全氧時,XRD顯示所得薄膜為單斜AgO沿[002]方向成長,此AgO薄膜在100度及200度大氣下退火會形成(AgO+Ag2O)雙相位;而在300度大氣下退火後形成立方Ag2O,當退火溫度升至400度時則完全還原成Ag。XPS分析顯示當銀的氧化態減少時,Ag 3d 電子束縛能由367.9 eV增加至368.1 eV。具雙相結構(AgO+Ag2O)之AgO薄膜顯示為直接能隙,能隙為2.25 eV,單相Ag2O亦為直接能隙其能隙為2.35 eV。


    Silver oxide thin films were deposited by reactive ion beam sputter deposition utilizing a capillaritron ion source (6 ~ 8 kV, 100 ~ 500 uA) and an anode layer ion source (0.7 kV, 13.5 mA). Both argon and oxygen were passed through the ion source simultaneously to act as sputtering and reactive gases, respectively. Experimental results show that only silver thin films were achieved utilizing the capillaritron ion sources, regardless of oxygen partial flow rates or deposition temperatures. This may due to the high kinetic energy of ejected particles that prevents the formation of silver oxide. Monoclinic AgO thin films were obtained utilizing the anode layer ion source with an argon/oxygen flow rate ratio of 1:1, 1:2, 1:3, 1:4 and full oxygen at room temperature. The monoclinic AgO thin film exhibits a preferred growth direction along the [002] direction. Annealing at 300C in air results in transformation to cubic Ag2O. High annealing temperature at 400C results in complete reduction to silver. And in an argon oxygen ratio of 1:1 and 1:2, there is coexistence AgO and Ag2O phase. XPS analysis show that as the oxidation state decreases, Ag 3d binding energy increases from 367.9 eV to 368.1 eV, which is characteristic of silver oxide. Both AgO(AgO+Ag2O) and Ag2O exhibit a direct band gap of 2.25 eV and 2.35 eV, respectively.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 離子束濺鍍原理 3 2.1.1 濺鍍原理3 2.1.2 離子束濺鍍之優點 3 2.1.3 離子束濺鍍原理 4 2.1.4 反應式濺鍍 5 2.2 薄膜成長理論 6 2.2.1 薄膜成核與成長 6 2.3 氧化銀簡介 9 2.3.1 氧化銀(AgO), Ag(I,III) 9 2.3.2 氧化銀(Ag2O), Ag(I) 11 2.3.3 溫度與AgO、Ag2O相位的關係 13 2.3.4 AgO及Ag2O薄膜的製備&能隙&電阻率 15 第三章 實驗步驟與量測方法 18 3.1.1 不同離子源沉積氧化銀薄膜 18 3.2 特性分析儀器 23 3.2.1 場發射掃描式電子顯微鏡(Field emission scanning electron microscopy, FE-SEM) 23 3.2.2 能量散射光譜儀 (Energy dispersive x-ray spectroscope, EDS) 24 3.2.3原子力顯微鏡(Atomic force microscope, AFM) 25 3.2.4 X-ray繞射(X-ray diffraction, XRD) 27 3.2.5 X光光電子光譜法(X-ray photoelectron spectroscopy, XPS) 29 3.2.6 穿透率量測 31 第四章 實驗結果與討論 33 4.1毛細式離子源沉積之AgxO特性分析 33 4.1.1 場發射掃描式電子顯微鏡(FE-SEM)分析 33 4.1.2 X-ray 繞射儀分析 37 4.2陽極層離子源沉積之特性分析 43 4.2.1 X-ray 繞射分析 43 4.2.2 穿透率分析 47 4.2.3 X-ray光電子能譜(XPS)分析 49 第五章 結論與未來展望 53 參考文獻 55

    [1] W. R. Grove, “On the electro-chemical polarity of gases,” Phil. Trans. Roy. Soc., Vol. 142, p. 87, 1852.
    [2] M. Varasi, C. Misiano, and L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films, Vol. 117, pp. 163-172, 1984.
    [3] C. C. Lee, J. C. Hsu, D. T. Wei, and J. H. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films, Vol. 308-309, pp. 74-78, 1997.
    [4] S. M. Kane, and K. Y. Ahn, “Characteristics of ion-beam-sputtered thin films,” J. Vac. Sci. Technol., Vol. 16, No. 2, pp. 171-174, 1979.
    [5] S. B. Krupanidhi, H. Hu, and V. Kumar, “Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films,” J. Appl. Phys., Vol. 71, No. 1, pp. 376-388, 1992.
    [6] C. C. Lee, D. T. Wei, J. C. Hsu, and C. H. Shen, “Influence of oxygen on some oxide films prepared by ion beam sputter deposition,” Thin Solid Films, Vol. 290-291, pp. 88-93, 1996.
    [7] C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci., Vol. 171, No. 1-2, pp. 151-156, 2001.
    [8] 白木靖寬、吉田貞史,“薄膜工程學,” 全華科技圖書股份有限公司, 台北市, pp. 2-48, 2004.
    [9] L. Davis, “Properties of transparent conducting oxides deposited at room temperature,” Thin Solid Films, Vol. 236, No. 1-2, pp. 1-5, 1993.
    [10] C. Argile, G. E. Rhead, “Absorbed layer and thin film growth modes monitored by augur electron spectroscopy, ”Surface Science Reports, Vol. 10, No. 6-7, pp. 277-356, 1989.
    [11] K. N. Tu, J. W. Mayer, and L. C..Feldman, “Electronic thin film science,” Macmillan Publishing Co., New York, p. 428, 1992.
    [12] M. Ohring, “The materials science of thin films,” Academic Press, New Jersey, p.197,224, 1992.
    [13] A. N. Mansour, “Evidence for an Ag4O3 phase of silver oxide,” J. Phys. Chem., Vol. 94 , pp. 1006-1010, 1990.
    [14] P. Norby, R. Dinnebier, and A. N. Fitch, “Decomposition of silver carbonate; the crystal structure of two high-temperature modifications of Ag2CO3,” Inorg. Chem., Vol. 41, pp. 3628-3637, 2002.
    [15] W. C. Hsu, J. Y. Chyan, Y. S. Lu, and J. A. Yeh, “Electroluminescence of out-of-plane silicon nanowire/silver oxide/silver nanodendrite heterostructures,” Opt. Mater. Express, Vol. 1, No. 7, pp. 1210-1215, 2011.
    [16] Y. Chiu, U. Rambabu, M. H. Hsu, H. P. D. Shieh, C. Y. Chen, and H. H. Lin, “Fabrication and nonlinear optical properties of nanoparticle silver oxide films,” J. Appl. Phys., Vol. 94 , pp. 1996-2001, 2003.
    [17] X. Y. Zhang, X. Y. Pan, Q. F. Zhang, B. X. Xu, H. B. Jiang, C. L. Liu, Q. H. Gong, and J. L. Wu, “Synthesis of silver oxide nanoscale thin films and photo-activated dynamic luminescence from their nanoparticles,” Acta. Phys. Chim. Sin., Vol. 19, No. 3, pp. 203-207, 2003.
    [18] G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, “The thermal decomposition of silver (I, III) oxide : A combined XRD, FT-IR and Raman spectroscopic study,” Phys. Chem. Chem. Phys., Vol. 3, No. 17, pp. 3838-3845, 2001.
    [19] V. Scatturin, P. L. Bellon , and A. J. Salkind, ”The structure of silver oxide determined by means of neutron diffraction,” J. Electrochem. Soc., Vol. 108, No. 9, pp. 819-822, 1961.
    [20] E. Farhat, A. Donnadieu, and J. Robin, “Cinėtique de la croissance de couches minces d'oxyde d'argent AgO,” Thin Solid Films, Vol. 29, No. 2, pp. 319-324, 1975.
    [21] M. Bielmann, P. Schwaller, P. Ruffieux, O. Groning, L. Schlapbach, and P. Groning, “AgO investigated by photoelectron spectroscopy: Evidence for mixed valence,” Phys. Rev. B, Vol. 65, No. 23, pp. 2354311-2354315, 2002.
    [22] J. P. Allen, D. O. Scanlon, and G. W. Watson, “Electronic structure of mixed-valence silver oxide AgO from hybrid density-functional theory,” Phys. Rev. B, Vol. 81, No. 16, pp. 1103-1106, 2010.
    [23] K. Yvon, A. Bezinge, P. Tissot, and P. Fischer, “Structure and magnetic properties of tetragonal silver(I,III) oxide, AgO,” J. Solid State Chem., Vol. 65, No. 2, pp. 225-230, 1986.
    [24] D. Dellasega, A. Faciben , F. D. Fonzo, V. Russo, C. Conti, C. Ducati, C. S. Casari, A. L. Bassi, and C. E. Bottani, “Nanostructured high valence silver oxide produced by pulsed laser deposition, ” Appl. Surf. Sci., Vol. 255, No. 10, pp. 5248–5251, 2009.
    [25] J. P. Allen, D. O. Scanlon, and G. W. Watson, “Electronic structures of silver oxides,” Phys. Rev. B, Vol. 84, No. 11, pp. 5141-5154, 2011.
    [26] J. F. Pierson, and T. C. Rousselot, “Stability of reactively sputtered silver oxide films,” Surf. Coat. Technol., Vol. 200, No. 1-4, pp. 276– 279, 2005.
    [27] Y. Ida, S. Watase, T. Shinagawa, M. Watanabe, M. Chigane, M. Inaba, A. Tasaka, and M. Izaki ,“Direct electrodeposition of 1.46 eV bandgap silver(I) oxide semiconductor films by electrogenerated acid,” Chem. Mater., Vol. 20, pp. 1254–1256, 2008.
    [28] Y. Abe, T. Hasegawa, M. Kawamura, and K. Sasaki, “Characterization of Ag oxide thin films prepared by reactive RF sputtering,” Vac., Vol. 76, No. 1, pp. 1-6, 2004.
    [29] L. H. Tjeng, M. B. J. Meinders, J. V. Elp, J. Ghijsen, and G. A. Sawatzky, “Electronic structure of Ag2O,” Phys. Rev. B, Vol. 41, No 5, pp. 3190-3199, 1990.
    [30] X. Y. Gao, H. L. Feng, J. M. Ma, Z. Y. Zhang, J. X. Lu, Y. S. Chen, S. E. Yang, and J. H. Gu, “Analysis of the dielectric constants of the Ag2O film by spectroscopic ellipsometry and single-Oscillator model,” Phys. Rev. B, Vol. 405, No. 7, pp. 1922–1926, 2010.
    [31] J. H. Qiu, P. Zhou, X. Y. Gao, J. N. Yu, S. Y. Wang, J. Li, Y. X. Zheng, Y. M. Yang, Q. H. Song, and L. Y. Chen, “Ellipsometric study of the optical properties of silver oxide prepared by reactive magnetron sputtering,” J. Korean Phys. Soc., Vol. 46, pp. 269-275, 2005.
    [32] B. V. L’vov, ” Kinetics and mechanism of thermal decomposition of silver oxide,” Thermochim. Acta, Vol. 333, No. 1, pp. 13-19, 1999.
    [33] W. A. Parkhurst, S. Dallek, and B. F. Larrick, “Thermogravimetry‐evolved gas analysis of silver oxide cathode material,” J. Electrochem. Soc., Vol. 131, No. 8, pp. 1739-1742, 1984.
    [34] S. Dallek, W. A. West, and B. F. Larrick,, “Decomposition kinetics of AgO cathode material by thermogravimetry, ” J. Electrochem. Soc., Vol. 133, No. 12, pp. 2451-2454, 1986.
    [35] X. Y. Gao, S. Y. Wang, J. Li, Y. X. Zheng, R. J. Zhang, P. Zhou, Y. M. Yang, and L. Y. Chen, “Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPS methods,” Thin Solid Films, Vol. 455–456, pp 438–442, 2004.
    [36] X. Y. Gao, H. L. Feng, J. M. Ma, and Z. Y. Zhang, “Spectroscopic ellipsometric study of the optical properties of Ag2O film prepared by direct-current magnetron reactive sputtering,” Chin. Phys. B, Vol. 19, No. 9, pp. 291-296, 2010.
    [37] X. Y. Gao, H. L. Feng, Z. Y. Zhang, J. M. Ma, and J. X. Lu, “Effect of rapid thermal processing on the microstructure and optical properties of as-deposited Ag2O film by direct current reactive magnetron sputtering, ” Chin. Phys. Lett., Vol. 27, No. 2, pp. 6804-6807, 2010.
    [38] A. J. Varkey and A. F. Fort, “Some optical properties of silver peroxide (AgO) and silver oxide (Ag2O) films produced by chemical-bath deposition,” Sol. Energy Mater. Sol. Cells, Vol. 29, No. 3, pp. 253-259, 1993.
    [39] J. F. Pierson, D. Wiederkehr and A. Billard, “Reactive magnetron sputtering of copper, silver, and gold,” Thin Solid Films, Vol. 478, No. 1-2, pp. 196-205, 2005.
    [40] U. K. Barik, S. Srinivasan, C. L. Nagendra, and A. Subrahmanyam, “Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen,” Thin Solid Films, Vol. 429, No. 1-2, pp. 129–134, 2003.
    [41] S. B. Rivers, G. Bernhardt, M. W. Wright, D. J. Frankel, M. M. Steeves and R. J. Lad, “Structure, conductivity, and optical absorption of Ag2−xO films,” Thin Solid Films, Vol. 515, No. 24, pp. 8684-8688, 2007.
    [42] F. X. Bock, T. M. Christensen, S. B. Rivers, L. D. Doucette and R. J. Lad, “Growth and structure of silver and silver oxide thin films on sapphire,” Thin Solid Films., Vol. 468, No. 1-2, pp. 57-64, 2004.
    [43] W. Wei, X. Mao, L. A. Ortiz, and D. R. Sadoway, “Oriented silver oxide nanostructures synthesized through a template-free electrochemical route,” J. Mater. Chem., Vol. 21, No. 2, pp. 432–438, 2011.
    [44] H. J. Kim, J. W. Bae, J. S. Kim, K. S. Kim, Y. C. Jang, G. Y. Yeom, and N. E. Lee, “Electrical, optical, and structural characteristics of ITO thin films by krypton and oxygen dual ion-beam assisted evaporation at room temperature,” Thin Solid Films, Vol. 377-378, pp. 115-121, 2000.
    [45] J. Tauc, R. Griogorovici and A. Vaucu, “Optical properties and electronic structure of amorphous germanium,” Phys. Stat. Sol., Vol. 15, No. 2, pp. 627-637, 1966.
    [46] J. S. Hammond , S. W. Gaarenstroom, and N. Winograd, “X-ray photoelectron spectroscopic studies of cadmium- and silver-oxygen surfaces,” Anal. Chem., Vol. 47, pp. 2193-2199, 1975.
    [47] S. W. Gaarenstroom, and N. Winograd, “Initial and final state effects in the ESCA spectra of cadmium and silver oxides,” J. Chem. Phys., Vol. 67, No. 8, pp. 3500-3506, 1977.
    [48] J. F. Weaver, and G. B. Hoflund, “Surface characterization study of the thermal decomposition of AgO,” J. Phys. Chem., Vol. 98, pp. 8519-8524, 1994.
    [49] J. F. Weaver, and G. B. Hoflund, “Surface characterization study of the thermal decomposition of Ag2O,” Chem. Mater., Vol. 6, pp. 1693-1699, 1994.
    [50] G. B. Hoflund, and Z. F. Hazos, “Surface characterization study of Ag, AgO, and Ag2O using X-ray photoelectron spectroscopy and electron energy-loss spectroscopy,” Phys. Rev. B., Vol. 62, No. 16, pp. 11126-11133, 2000.
    [51] G. Schon, , “ESCA studies of Ag, Ag2O and AgO,” Acta Chem. Scand., Vol. 27, No. 7, pp. 2623-2633, 1973.
    [52] M. Bielmann, P. Schwaller, P. Ruffieux, O. Groning, L. Schlapbach, and P. Groning, “AgO investigated by photoelectron spectroscopy: Evidence for mixed valence,” Phys. Rev. B, Vol. 65, No. 23, p. 5431-5435, 2002.

    無法下載圖示 全文公開日期 2018/06/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE