簡易檢索 / 詳目顯示

研究生: 林一豪
Yi-Hao Lin
論文名稱: 共軛交替共聚合物的合成及於化學感測的應用
Synthesis of Alternating Conjugated Copolymers and Their Application in Chemical Detection
指導教授: 游進陽
Chin-Yang Yu
口試委員: 施劭儒
shao-ju shih
王丞浩
Chen-Hao Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 136
中文關鍵詞: 共軛交替共聚合物咔唑四苯乙烯聚集誘導發光聯吡啶螢光淬滅
外文關鍵詞: conjugated alternating copolymers, carbazole, tetraphenylethylene, aggregation-induced luminescence, pyridine, fluorescence quenching
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本計畫主要分兩個系列探討共軛交替共聚合物於螢光化學感測的應用,第一個系列為咔唑與四苯乙烯交替共軛聚合物之合成及其光學性質研究,並應用於爆裂物檢測。本實驗選用鈀金屬催化之鈴木耦合反應作為高分子聚合反應,所合成出的高分子分子量大於5000 g/mol,聚分散引數小於3.0。其高分子在不同比例之溶液下,呈現明顯聚集誘導發光的性質,能達到在稀釋溶液中只發出微弱或不具螢光性質,而在高濃度聚集態或固態時,產生高強度螢光的性質。90%含水之溶液狀態下,量子產率大於15%,且最大放光波長為400到600 nm。爆裂物檢測結果顯示,在含水量90%的高分子混合溶液中,可明顯觀察到當爆裂物濃度增加時,溶液的螢光強度逐漸下降。在高分子TYPE 1試紙之測試中,將不同濃度之爆裂物溶液滴於試紙上,由肉眼可觀察至最低濃度為10-7 M。
第二個系列主要合成了應用在重金屬檢測的聯吡啶和對苯乙烯之交替共聚物,其聯吡啶單元具有兩個氮原子可和金屬離子進行配位螯合,進而造成螢光淬滅的反應。高分子TYPE 2液態或固態下,皆會與金屬離子Cd2+、Cu2+、Hg2+、Ni2+、Pb2+和Zn2+螯合產生的顯著螢光淬滅的反應,透過淬滅程度或吸收波長紅移的差異,證明了此共軛高分子在重金屬檢測應用上的潛力。


This project primarily delves into the application of conjugated alternating copolymers in fluorescence chemical sensing, which is divided into two series. The first series focuses on the synthesis and optical properties investigation of a cyclopentadiene and tetraphenylethylene alternating conjugated polymer. This polymer is utilized for explosive detection. The polymerization reaction employed in this experiment is the palladium-catalyzed Suzuki coupling, resulting in high molecular weight polymers exceeding 5000 g/mol with a low polydispersity index of less than 3.0. The polymer exhibits evident aggregation-induced luminescence characteristics in solutions of varying concentrations. It demonstrates weak or no fluorescence in diluted solutions, while displaying high-intensity fluorescence in highly concentrated or solid-state aggregated forms. In a solution consisting of 90% water content, the quantum yield surpasses 15%, with a maximum emission wavelength ranging from 400 to 600 nm. The explosive detection results reveal that, in a high-polymer mixed solution with 90% water content, the fluorescence intensity gradually diminishes as the explosive concentration increases. In the testing of the polymer-based TYPE 1 paper, different concentrations of explosive solutions were dropped onto the paper, and the lowest detectable concentration was observed by the naked eye to be 10-7 M.
The second series primarily involves the synthesis of an alternating copolymer of pyridine and styrene for heavy metal detection. The pyridine units in this copolymer possess two nitrogen atoms capable of coordinating and chelating with metal ions, resulting in fluorescence quenching. The polymer, labeled as TYPE 2, exhibits significant fluorescence quenching reactions when in liquid or solid state in the presence of metal ions such as Cd2+, Cu2+, Hg2+, Ni2+, Pb2+, and Zn2+. The degree of quenching or the redshift in absorption wavelength demonstrates the potential of this conjugated polymer for heavy metal detection applications.

摘要 I ABSTRACT II 目錄 IV 圖目錄 VI 表目錄 XIII 第1章 緒論 1 1.1 共軛發光材料簡介 1 1.2 聚集誘導發光與聚集螢光淬滅之機制 4 1.3 聚集誘導發光(AIE)分子的結構與分類 8 1.3.1 碳氫類AIE特性之分子 8 1.3.2 含雜環類AIE特性之分子 9 1.4 聚集誘導發光材料之應用 11 1.4.1 有機發光二極體(OLED) 11 1.4.2 化學感測器 12 1.4.2.1 離子檢測 13 1.4.2.2 有機胺類分子檢測 15 1.4.2.3 爆裂物分子檢測 18 1.4.3 生物化學探測 23 1.4.3.1 細胞成像技術和光動力療法 24 1.4.4 智慧材料-力致變色材料(Mechanochromatic materials) 30 1.5 研究目的 36 第2章 合成與結構鑑定 39 2.1 雙邊溴化咔唑之前驅物 39 2.2 雙邊溴化咔唑 42 2.3 具長碳鏈之雙邊溴化咔唑 45 2.4 溴化四苯乙烯 49 2.5 酯化之四苯乙烯 52 2.6 咔唑和四苯乙烯的共軛高分子 55 2.7 溴化聯吡啶 58 2.8 磷鹽化聯吡啶 61 2.9 雙(辛氧基)苯 64 2.10 溴化雙(辛氧基)苯 67 2.11 醛化雙(辛氧基)苯 70 2.12 磷鹽化聯吡啶和醛化雙(辛氧基)苯的共軛高分子 73 第3章 共軛高分子的性能與應用 76 3.1 光學性質 76 3.2 熱性質 85 3.3 電化學性質 88 3.4 高分子膜之形態 90 3.5 高分子TYPE 1溶液之爆裂物檢測 91 3.6 高分子TYPE 1固態之爆裂物檢測 96 3.7 高分子TYPE 2溶液之重金屬檢測 97 3.8 高分子TYPE 2固態之重金屬檢測 108 第4章 結論 112 參考文獻 114

[1] K. J. Less, E. G. Wilson, J. Phys. C: Solid State Phys. 1973, 6, 3110.
[2] H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, A. J. Heeger, Chem Comun. 1977, 578.
[3] N. K. Guimard, N. Gomez, C. E. Schmidt, Prog. Polym. Sci. 2007, 32, 876.
[4] J. Orton, Oxford University Press, 2004.
[5] Y. L. Lei, Q. L. Niu, H. Y. Mi, Y. L. Wang, I. Nurulla, W. Shi, Dyes Pigments. 2013, 96.
[6] S. M. Lin, S. P. Liu, H. X. Zou, W. N. Zeng, L. Y. Wang, R. Beuerman, D. R. Cao, J. Polym. Sci., Part A: Polym. Chem. 2011, 3882.
[7] W. Shi, L. Wang, H. Y. Zhen, D. X. Zhu, T. Awut, H. Y. Mi, I. Nurulla, Dyes Pigments. 2009, 83.
[8] S. Geetha, D. C. Trivedi, Synth. Met. 2005, 148, 187.
[9] M. R. Karim, C. J. Lee, M. S. LEE, J. Polym. Sci., Part A: Polym. Chem. 2006, 5283.
[10] T. Junkers, J. Vandenbergh, P. Adriaensens, L. Lutsen, D. Vanderzande, Polym. Chem. 2012, 3, 275.
[11] B. Liu, B. S. Gaylord, S. Wang, G. C. Bazan, J. Am. Chem. Soc. 2003, 125, 6705.
[12] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature. 1990, 347, 539.
[13] N. Thejo Kalyani, S. J. Dhoble, Renew. Sustain. Energy Rev. 2012, 16, 2696.
[14] S. Holliday, J. E. Donaghey, I. McCulloch, Chem. Mater. 2014, 26, 647.
[15] G. Li, R. Zhu, Y. Yang, Nat. Photonics. 2012, 6, 153.
[16] S. W. Thomas III, G. D. Joly, T. M. Swager, Chem. Rev. 2007, 107, 1339.
[17] F. Lombeck, A. Sepe, R. Thomann, R. H. Friend, M. Sommer, ACS Nano 2016, 10, 8087.
[18] M. L. Jones, D. M. Huang, B. Chakrabarti, C. Groves, J. Phys. Chem. C 2016, 120, 4240.
[19] L. Feng, C. Zhu, H. Yuan, L. Liu, F. Lv, S. Wang, Chem. Soc. Rev. 2013, 42, 6620.
[20] Q. Miao, H. Huang, X. Huang, Y. Xu, L. Zong, Y. Cheng, Polym. Int. 2010, 59, 712.
[21] S. P. Jagtap, S. Mukhopadhyay, V. Coropceanu, G. L. Brizius, J. L. Brédas, D. M. Collard, J. Am. Chem. Soc. 2012, 134, 7176.
[22] Y. Shen, Z. Zhang, H. Liu, Y. Yan, S. Zhang, B. Yang, Y. Ma, J. Phys. Chem. C. 2019, 123, 13047.
[23] F. He, H. Xu, B. Yang, Y. Duan, L. Tian, K. Huang, Y. Ma, S. Liu, S. Feng, J. Shen, Adv. Mater. 2005, 17, 2710.
[24] K. R. J. Thomas, J. T. Lin, Y. T. Tao, C. H. Chuen, Adv. Mater. 2002, 14, 822.
[25] J. Luo, Z. Xie, J. W. Y . Lam, Chem. Commun. 2001, 1740.
[26] G. F. Zhang, M. P. Aldred, W. L. Gong, C. Li, M. Q. Zhu, Chem. Commun. 2012, 7711.
[27] B. Z. Tang, X. Zhan, G. Yu, P. P. Sze Lee, Y. Liu, D. Zhu, J. Mater. Chem. 2001, 11, 2974.
[28] M. Wang, G. Zhang, D. Zhang, D. Zhu, B. Z. Tang, J. Mater. Chem. 2010, 20, 1858.
[29] H. Zhou, J. Li, M. H. Chua, H. Yan, B. Z. Tang, J. Xu, Polym. Chem. 2014, 5, 5628.
[30] H. Zhou, X. Wang, T. T. Lin, J. Song, B. Z. Tang, J. Xu, Polym. Chem. 2016, 7, 6309.
[31] Y. Hu, F. Song, Z. Xu, Y. Tu, H. Zhang, Q. Cheng, J. W. Y. Lam, D. Ma, B. Z. Tang, ACS Appl. Polym. Mater. 2019, 1, 221.
[32] M. H. Chua, K. W. Shah, H. Zhou, J. Xu, Molecules 2019, 24, 2711.
[33] J. Qian, B. Z. Tang, Chem. 2017, 3, 56.
[34] C. Y. Yu, Y. C. Lai, The Royal Society of Chemistry. 2018, 8, 19341.
[35] J. Mei, Y. Hong, J. W. Lam, Advanced Materials. 2014, 26, 5429.
[36] N. L. Leung, N. Xie, W. Yuan, Chemistry. 2014, 20, 15349.
[37] J. Mei, Y. Hong, J. W. Y. Lam, Qin, A.Y. Tang, B. Z. Tang, Adv. Mater. 2014, 26, 5429.
[38] J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718.
[39] L. Yang, J. Ye, L. Xu, X. Yang, W. Gong, Y. Lin, G. Ning, RSC Adv. 2012, 2, 11529.
[40] J. Ye, Deng, D. Deng, Y. Gao, Wang, X. Wang, L. Yang, Y. Lin, G. Ning, Spectrochim. Acta, Part A, 2015, 134, 22.
[41] X. Zhang, J. Ye, L. Xu, L. Yang, D. Deng, G. Ning, J. Lumin. 2013, 139, 28.
[42] Z. Zhang, B. Xu, J. Su, L. Shen, Y. Xie, H. Tian, Angew. Chem. Int. Ed. 2011, 50, 11654.
[43] R. Hu, J. W. Y. Lam, Y. Liu, X. Zhang, B. Z. Tang, Chem. Eur. J. 2013, 19, 5617.
[44] J. Zhang, B. Xu, J. Chen, S. Ma, Y. Dong, L. Wang, B. Li, L. Ye, W. Tian, Adv. Mater. 2014, 26, 739.
[45] Y. X. Li, Z. Chen, Y. Cui, G. M. Xia, X. F. Yang, J. Phys. Chem. C. 2012, 116, 6401.
[46] Y. X. Li, G.X. Sun, J. L. Miao, Y. Nie, Z. W. Zhang, X. T. Tao, Tetrahedron Lett. 2013, 54, 3263.
[47] H. C. Yeh, W. C. Wu, Y. S. Wen, D. C. Dai, J. K. Wang, C. T. Chen, J. Org. Chem., 2004, 69, 6455.
[48] S. S. Palayangoda, X. Cai, R. M. Adhikari, D. C. Neckers, Org. Lett., 2008, 10, 281.
[49] R. Yoshii, A. Nagai, K. Tanaka, Y. Chujo, Chemistry, 2013, 19, 4506.
[50] S. M. Chen, Z. J. Zhao, B. Z. Tang, H. S. Kwok, J. Phys. D: Appl. Phys. 2010, 43, 095101.
[51] C. Zhu, L. Liu, Q. Yang, S. Wang, Chem Rev, 2012, 113, 4687.
[52] X. Huang, X. Gu, G. Zhang, D. Zhang, Chem. Commun., 2012, 48, 12195.
[53] X. Wang, J. Hu, T. Liu, G. Zhang, S. Liu, J. Mater. Chem., 2012, 22, 8622.
[54] X. Huang, X. Gu, G. Zhang, D. Zhang, Chem. Commun. 2012, 48, 12195.
[55] L. Kong, Y. Zhang, H. Mao, X. Pan, Y. Tian, Z. Tian, X. Zeng, J. Shi, B. Tong, Y. Dong, Faraday Discuss. 2017, 196, 101
[56] J. M. Kim, S. Y. Jun and K. Chang, J. Phys. Chem. C, 2016, 17, 9475.
[57] G. W. Kabalka, M. L. Yao, S. Borella, Z. Wu, Y. H. Ju, T. Quick, J. Org. Chem, 2008, 73, 2668.
[58] B. He, H. Su, T. Bai, Y. Wu, S. Li, M. Gao, R. Hu, Z. Zhao, A. Qin, J. Ling, B. Z. Tang, J. Am. Chem. Soc, 2017, 139, 5437.
[59] H. Zhou, X. Wang, T. Lin, J. Song, B. Z. Tang, J. W. Xu, Polym Chem, 2016, 7, 6309.
[60] Y. Guo, X. Feng, T. Han, S. Wang, Z. Lin, Y. Dong, B. Wang, J. Am. Chem. Soc. 2014, 136, 15485
[61] R. P. Singh, R. D. Verma, D. T. Meshri, J. M. Shreeve, Angew. Chem. Int. Ed. 2006, 45, 3584.
[62] Y. Yuan, C. J. Zhang, B. Liu, Angew.Chem. Int. Ed. 2015, 54,11419.
[63] C. Gui, E. Zhao, R. T. K. Kwok, A. C. S. Leung, J. W. Y. Lam, M. Jiang, H. Deng, Y. Cai, W. Zhang, H. Su, B. Z. Tang, Chem. Sci. 2017, 8, 1822.
[64] X. Liu, L. Ouyang, X. Cai, Y. Huang, X. Feng, Q. Fan, W. Huang, Biosensors and Bioelectronics. 2013, 41, 218.
[65] Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, J. Xu, Chem. Soc. Rev. 2012, 41, 3878.
[66] O. L. Torres-Rocha, X. Wu, C. Zhu, C. M. Crudden, M. F. Cunningham, Macromol. Rapid Commun. 2019, 40, 1800326.
[67] Y. Ooyama, Y. Harima, J. Mater. Chem. 2011, 21, 8372.
[68] Y. Sagara, M. Karman, E. Verde-Sesto, K. Matsuo, Y. Kim, N. Tamaoki, C. Weder, J. Am. Chem. Soc. 2018, 140, 1584–1587.

QR CODE