簡易檢索 / 詳目顯示

研究生: Getnet Ayele Kebede
Getnet Ayele Kebede
論文名稱: Design and Development of a Decoupled Six-Axis Force/Moment Sensor
指導教授: 林其禹
Chyi-Yeu Lin
口試委員: 張以全
Peter I-Tsyuen Chang
林其禹
Chyi-Yeu lin
郭重顯
Chung-Hsien Kuo
林沛群
Pei-Chun Lin
陳金聖
Chin-Sheng Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 127
外文關鍵詞: six-axis force–moment sensor, error reduction techniques, strain gauge arrangement, cross beam, cross-talk;
相關次數: 點閱:246下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Table of Contents Acknowledgements IV 摘要 V Abstract VI List of figures XII List of Tables XVI Chapter 1. 1 Introduction 1 1.1 Motivation and research statements 3 1.2 Force/moment sensor background 4 1.3 Objective and Scope of Study 4 1.4 Thesis overview 6 1.5 Thesis organization 7 Chapter 2. 8 Literature reviews 8 2.1 Mechanically coupled sensors 8 2.2 Mechanically decoupled sensors 9 2.3 Multi axis F/M sensor key features 9 2.3.1 Mechanical structural design 10 2.3.2 Sensing element type and arrangement 14 2.3.3 Cross-talk (cross coupling) 19 2.3.4 Calibration system 19 2.3.5 Noise reduction 20 Chapter 3 21 Design and development of six-axis force-moment sensor 21 3.1 Structural Design 21 3.1.1 Structural design of sensor I 21 3.1.2 Structural design of sensor II 22 3.2 Strain Gauge Arrangement 25 3.3 Measurement Principle and Sensor Calibration system 27 3.3.1 Measurement Principle 27 3.3.2 Sensor Calibration 28 3.4 Multi-Channel Sensor Measurement and Detection System Based on LabVIEW 33 3.4.1 Equipment’s and circuit systems 34 3.4.2 Software Configuration 35 3.5 Error Reduction Techniques 37 3.5.1 Force Filtering 38 3.5.2 Moving Average Filter 39 3.5.3 Error Reduction Techniques Process 40 Chapter 4. 41 Fixed Structure of a Decoupled Six-Axis Force/Moment Sensor 41 4.1 Finite Element Analysis of Fixed Structure Decoupled Six-Axis F/M Sensor 41 4.2 Experimental Results 45 4.3 Summary 49 Chapter 5. 50 Sliding and Rotating Structure of a Decoupled Six-Axis Force/Moment Sensor 50 5.1 Structural Analytic Solution 50 5.2.1 Under Applied Force Fx or Fy 52 5.2.2 Under Applied Force Fz 54 5.2.3 Under Applied Moment Mx or My 55 5.2.4 Under Applied Moment Mz 57 5.2 Results and Discussion 58 5.2.1 Numerical Simulations 58 5.2.2 Comparison of Numerical Solution with Analytical Solution 59 5.2.3 Optimization 63 5.2.4 Friction 67 5.2.5 Experimental Validation 67 5.3 Summary 69 Chapter 6. 70 Six-Axis Force/Moment Sensor Testing on The Robot Manipulator 70 6.1 Testing process of the robot manipulator 71 6.2 Experimental results 71 6.2.1 Fixed type six-axis F/M sensor 73 6.2.2 Sliding Structure six-axis F/M sensor 73 6.2.3 JR3 six-axis F/M sensor 74 6.2.4 Robotiq six-axis F/M sensor 76 6.3 Summary 77 Chapter 7. 78 Conclusions and future works 78 7.1 Conclusions 78 7.2 Future works 80 References 81 Appendix A 90 Fixed Structure Force/Moment Sensor 90 Appendix B 94 Sliding and Rotating Structure Force/Moment Sensor 94 Appendix C 101 Fixed Structure Force/Moment Sensor the Calibration data, Decoupling matrix and Measurement test data 101 Appendix D 105 Sliding and Rotating Structure Force/Moment Sensor the Calibration data, Decoupling matrix and Measurement test data 105 Appendix E 109 Fixed and Sliding Structure Force/Moment Sensor Specifications 109

    References
    1. Kang, M.-K.; Lee, S.; Kim, J.-H. Shape optimization of a mechanically decoupled six-axis force/torque sensor. Sensors and Actuators A: Physical 2014, 209, 41-51.
    2. Park, J.-J.; Kim, G.-S. Development of the 6-axis force/moment sensor for an intelligent robot's gripper. Sensors and Actuators A: Physical 2005, 118, 127-134.
    3. Song, A.; Wu, J.; Qin, G.; Huang, W. A novel self-decoupled four degree-of-freedom wrist force/torque sensor. Measurement 2007, 40, 883-891.
    4. Joo, J.; Na, K.; Kang, D.J.M. Design and evaluation of a six-component load cell. 2002, 32, 125-133.
    5. Krouglicof, N.; Alonso, L.M.; Keat, W.D. Development of a mechanically coupled, six degree-of-freedom load platform for biomechanics and sports medicine. In Proceedings of 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583); pp. 4426-4431.
    6. Bicchi, A. A criterion for optimal design of multi-axis force sensors. Robotics and Autonomous Systems 1992, 10, 269-286.
    7. Chen, L.; Song, A. A novel three degree-of-freedom force sensor. In Proceedings of Measuring Technology and Mechatronics Automation, 2009. ICMTMA'09. International Conference on; pp. 77-80.
    8. Krouglicof, N.; Alonso, L.M.; Keat, W.D. Development of a mechanically coupled, six degree-of-freedom load platform for biomechanics and sports medicine. In Proceedings of Systems, Man and Cybernetics, 2004 IEEE International Conference on; pp. 4426-4431.
    9. Weiyi, H.; Hongming, J.; Hanqing, Z. Mechanical analysis of a novel six-degree-of-freedom wrist force sensor. Sensors and Actuators A: Physical 1993, 35, 203-208.
    10. Zhao, Y.; Jiao, L.; Weng, D.; Zhang, D.; Zheng, R. Decoupling principle analysis and development of a parallel three-dimensional force sensor. Sensors 2016, 16, 1506.
    11. Kim, G.-S. Design of a six-axis wrist force/moment sensor using FEM and its fabrication for an intelligent robot. Sensors and Actuators A: Physical 2007, 133, 27-34.
    12. Liu, S.A.; Tzo, H.L. A novel six-component force sensor of good measurement isotropy and sensitivities. Sensors and Actuators A: Physical 2002, 100, 223-230.
    13. Zhang, W.; Lua, K.B.; Senthil, K.A.; Lim, T.T.; Yeo, K.S.; Zhou, G. Design and characterization of a novel T-shaped multi-axis piezoresistive force/moment sensor. IEEE Sensors Journal 2016, 16, 4198-4210.
    14. Kang, C. Performance improvement of a 6-axis force-torque sensor via novel electronics and cross-shaped double-hole structure. International Journal of Control Automation and Systems 2005, 3, 469.
    15. Kang, C.-G. Maximum structural error propagation of multi-axis force sensors. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing 2001, 44, 676-681.
    16. Joo, J.; Na, K.; Kang, D. Design and evaluation of a six-component load cell. Measurement 2002, 32, 125-133.
    17. Kim, M.-G.; Lee, D.-H.; Cho, N.-G. A force sensor with five degrees of freedom using optical intensity modulation for usage in a magnetic resonance field. Measurement Science and Technology 2013, 24, 045101, doi:10.1088/0957-0233/24/4/045101.
    18. Sun, Y.; Liu, Y.; Zou, T.; Jin, M.; Liu, H. Design and optimization of a novel six-axis force/torque sensor for space robot. Measurement 2015, 65, 135-148.
    19. Sun, Y.; Li, Y.; Liu, Y.; Liu, H. An online calibration method for six-dimensional force/torque sensor based on shape from motion combined with complex algorithm. In Proceedings of 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014); pp. 2631-2636.
    20. Ma, J.; Song, A.; Xiao, J. A robust static decoupling algorithm for 3-axis force sensors based on coupling error model and ε-SVR. Sensors 2012, 12, 14537-14555.
    21. Ma, Y.; Xie, S.; Zhang, X.; Luo, Y. Hybrid calibration method for six-component force/torque transducers of wind tunnel balance based on support vector machines. Chinese Journal of Aeronautics 2013, 26, 554-562.
    22. Jingzhu, Z.; Kai, G.; Cheng, X. Decoupling Strategy of Multi-dimensional Force Sensor Based on LS-SVM and αth-order Inverse System Method. In Proceedings of 8th International Conference on Electronic Measurement and Instruments, Xi'an, China; pp. 4-378-374-381.
    23. Kosuge, K.; Takeuchi, H.; Furuta, K. Motion control of a robot arm using joint torque sensors. In Proceedings of Proceedings of the 27th IEEE Conference on Decision and Control; pp. 610-615.
    24. Liang, Q.; Zhang, D.; Song, Q.; Ge, Y.; Cao, H.; Ge, Y. Design and fabrication of a six-dimensional wrist force/torque sensor based on E-type membranes compared to cross beams. Measurement 2010, 43, 1702-1719.
    25. Dwarakanath, T.; Dasgupta, B.; Mruthyunjaya, T. Design and development of a Stewart platform based force–torque sensor. Mechatronics 2001, 11, 793-809.
    26. Hayashi, Y.; Tsujiuchi, N.; Koizumi, T.; Oshima, H.; Ito, A.; Tsuchiya, Y. Optimum design of the thin-type four-axis force/moment sensor for a robot finger. In Proceedings of IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society; pp. 1287-1292.
    27. Hou, Y.; Yao, J.; Lu, L.; Zhao, Y. Performance analysis and comprehensive index optimization of a new configuration of Stewart six-component force sensor. Mechanism and Machine Theory 2009, 44, 359-368.
    28. Jia, Z.-Y.; Lin, S.; Liu, W. Measurement method of six-axis load sharing based on the Stewart platform. Measurement 2010, 43, 329-335.
    29. Wang, Z.; Li, Z.; He, J.; Yao, J.; Zhao, Y. Optimal design and experiment research of a fully pre-stressed six-axis force/torque sensor. Measurement 2013, 46.
    30. Wu, B.; Luo, J.; Shen, F.; Ren, Y.; Wu, Z. Optimum design method of multi-axis force sensor integrated in humanoid robot foot system. Measurement 2011, 44, 1651-1660.
    31. Bicchi, A.J.R.; Systems, A. A criterion for optimal design of multi-axis force sensors. 1992, 10, 269-286.
    32. Qiao, H.; Dalay, B.; Parkin, R.J.P.o.t.I.o.M.E., Part C: Journal of Mechanical Engineering Science. Robotic peg-hole insertion operations using a six-component force sensor. 1993, 207, 289-306.
    33. Chen, L.; Song, A. A novel three degree-of-freedom force sensor. In Proceedings of 2009 international conference on measuring technology and mechatronics automation; pp. 77-80.
    34. Li, Y.-j.; Wang, G.-c.; Zhao, D.; Sun, X.; Fang, Q.-h.J.M.S.; Processing, S. Research on a novel parallel spoke piezoelectric 6-DOF heavy force/torque sensor. 2013, 36, 152-167.
    35. Dwarakanath, T.; Dasgupta, B.; Mruthyunjaya, T.J.M. Design and development of a Stewart platform based force–torque sensor. 2001, 11, 793-809.
    36. Jia, Z.-Y.; Lin, S.; Liu, W.J.M. Measurement method of six-axis load sharing based on the Stewart platform. 2010, 43, 329-335.
    37. Hou, Y.; Yao, J.; Lu, L.; Zhao, Y.J.M.; Theory, M. Performance analysis and comprehensive index optimization of a new configuration of Stewart six-component force sensor. 2009, 44, 359-368.
    38. Kim, G.-S.J.S.; Physical, A.A. Design of a six-axis wrist force/moment sensor using FEM and its fabrication for an intelligent robot. 2007, 133, 27-34.
    39. Li, Y.-J.; Sun, B.-Y.; Zhang, J.; Qian, M.; Jia, Z.-Y.J.M. A novel parallel piezoelectric six-axis heavy force/torque sensor. 2009, 42, 730-736.
    40. Li, Y.-j.; Wang, G.-c.; Zhang, J.; Jia, Z.-y.J.M. Dynamic characteristics of piezoelectric six-dimensional heavy force/moment sensor for large-load robotic manipulator. 2012, 45, 1114-1125.
    41. Liu, J.; Li, M.; Qin, L.; Liu, J.J.S. Active design method for the static characteristics of a piezoelectric six-axis force/torque sensor. 2014, 14, 659-671.
    42. Alveringh, D.; Brookhuis, R.A.; Wiegerink, R.J.; Krijnen, G.J. A large range multi-axis capacitive force/torque sensor realized in a single SOI wafer. In Proceedings of 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS); pp. 680-683.
    43. Brookhuis, R.A.; Droogendijk, H.; de Boer, M.J.; Sanders, R.G.; Lammerink, T.S.; Wiegerink, R.J.; Krijnen, G.J.J.J.o.m.; microengineering. Six-axis force–torque sensor with a large range for biomechanical applications. 2014, 24, 035015.
    44. Brookhuis, R.A.; Wiegerink, R.J.; Lammerink, T.S.; de Boer, M.J.; Ma, K.; Elwenspoek, M. Scalable six-axis force-torque sensor with a large range for biomechanical applications. In Proceedings of 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS); pp. 595-598.
    45. Kim, D.; Lee, C.H.; Kim, B.C.; Lee, D.H.; Lee, H.S.; Nguyen, C.T.; Kim, U.K.; Nguyen, T.D.; Moon, H.; Koo, J.C. Six-axis capacitive force/torque sensor based on dielectric elastomer. In Proceedings of Electroactive Polymer Actuators and Devices (EAPAD) 2013; p. 86872J.
    46. Somlor, S.; Schmitz, A.; Hartanto, R.; Sugano, S. A prototype force sensing unit for a capacitive-type force-torque sensor. In Proceedings of 2014 IEEE/SICE International Symposium on System Integration; pp. 684-689.
    47. Kim, U.; Lee, D.-H.; Kim, Y.B.; Seok, D.-Y.; Choi, H.R.J.I.A.T.o.M. A novel six-axis force/torque sensor for robotic applications. 2016, 22, 1381-1391.
    48. Kim, J.-C.; Kim, K.-S.; Kim, S.J.R.o.S.I. Note: A compact three-axis optical force/torque sensor using photo-interrupters. 2013, 84, 126109.
    49. Al-Mai, O.; Ahmadi, M.; Albert, J.J.I.S.J. Design, development and calibration of a lightweight, compliant six-axis optical force/torque sensor. 2018, 18, 7005-7014.
    50. Haslinger, R.; Leyendecker, P.; Seibold, U. A fiberoptic force-torque-sensor for minimally invasive robotic surgery. In Proceedings of 2013 IEEE International Conference on Robotics and Automation; pp. 4390-4395.
    51. Huang, J.; Wong, C.Y.; Pham, D.T.; Wang, Y.; Ji, C.; Su, S.; Xu, W.; Liu, Q.; Zhou, Z. Design of a Novel Six-Axis Force/Torque Sensor based on Optical Fibre Sensing for Robotic Applications. In Proceedings of ICINCO (1); pp. 527-534.
    52. Liang, Q.; Wu, W.; Coppola, G.; Zhang, D.; Sun, W.; Ge, Y.; Wang, Y.J.R.; Manufacturing, C.-I. Calibration and decoupling of multi-axis robotic Force/Moment sensors. 2018, 49, 301-308.
    53. Oh, H.S.; Kang, G.; Kim, U.; Seo, J.K.; You, W.S.; Choi, H.R. Force/torque sensor calibration method by using deep-learning. In Proceedings of 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI); pp. 777-782.
    54. Beyeler, F.; Muntwyler, S.; Nelson, B.J. Design and calibration of a microfabricated 6-axis force-torque sensor for microrobotic applications. In Proceedings of Robotics and Automation, 2009. ICRA'09. IEEE International Conference on; pp. 520-525.
    55. Kim, K.; Sun, Y.; Voyles, R.M.; Nelson, B.J. Calibration of multi-axis MEMS force sensors using the shape-from-motion method. IEEE Sensors Journal 2007, 7, 344-351.
    56. Oddo, C.; Valdastri, P.; Beccai, L.; Roccella, S.; Carrozza, M.; Dario, P. Investigation on calibration methods for multi-axis, linear and redundant force sensors. Measurement Science and Technology 2007, 18, 623.
    57. Voyles, R.M.; Morrow, J.D.; Khosla, P.K. The shape from motion approach to rapid and precise force/torque sensor calibration. Journal of dynamic systems, measurement, and control 1997, 119, 229-235.
    58. Liang, Q.; Wu, W.; Coppola, G.; Zhang, D.; Sun, W.; Ge, Y.; Wang, Y. Calibration and decoupling of multi-axis robotic Force/Moment sensors. Robotics and Computer-Integrated Manufacturing 2018, 49, 301-308.
    59. Kebede, G.A.; Ahmad, A.R.; Lee, S.-C.; Lin, C.-Y.J.S. Decoupled Six-Axis Force–Moment Sensor with a Novel Strain Gauge Arrangement and Error Reduction Techniques. 2019, 19, 3012.
    60. Kang, M.-K.; Lee, S.; Kim, J.-H.J.S.; Physical, A.A. Shape optimization of a mechanically decoupled six-axis force/torque sensor. 2014, 209, 41-51.
    61. Kebede, G.A.; Ahmad, A.R.; Lee, S.C.; Lin, C.Y. Decoupled Six-Axis Force-Moment Sensor with a Novel Strain Gauge Arrangement and Error Reduction Techniques. Sensors (Basel) 2019, 19, doi:10.3390/s19133012.
    62. Wang, Y.; Zuo, G.; Chen, X.; Liu, L. Strain analysis of six-axis force/torque sensors based on analytical method. IEEE Sensors Journal 2017, 17, 4394-4404.
    63. Wu, B.; Cai, P. Decoupling Analysis of a Sliding Structure Six-axis Force/Torque Sensor. Measurement Science Review 2013, 13, 187-193, doi:10.2478/msr-2013-0028.
    64. Shimano, B.; Roth, B. On force sensing information and its use in controlling manipulators. IFAC Proceedings Volumes 1977, 10, 119-126.
    65. Sedra, A.S.; Smith, K.C. Microelectronic Circuits. 2004.
    66. Chen, D.; Song, A.; Li, A. Design and calibration of a six-axis force/torque sensor with large measurement range used for the space manipulator. Procedia Engineering 2015, 99, 1164-1170.
    67. Timoshenko, S.P. LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1921, 41, 744-746.
    68. Ma, J.; Song, A. Fast estimation of strains for cross-beams six-axis force/torque sensors by mechanical modeling. Sensors (Basel) 2013, 13, 6669-6686, doi:10.3390/s130506669.
    69. Huang, J.; Wong, C.Y.; Pham, D.T.; Wang, Y.; Ji, C.; Su, S.; Xu, W.; Liu, Q.; Zhou, Z. Design of a Novel Six-Axis Force/Torque Sensor based on Optical Fibre Sensing for Robotic Applications. 2018, 517-524.
    70. Stein, N.; Rosendahl, P.; Becker, W. Homogenization of mechanical and thermal stresses in functionally graded adhesive joints. Composites Part B: Engineering 2017, 111, 279-293.
    71. Nocedal, J.; Wright, S. Numerical optimization; Springer Science & Business Media: 2006.

    無法下載圖示 全文公開日期 2025/07/16 (校內網路)
    全文公開日期 2025/07/16 (校外網路)
    全文公開日期 2025/07/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE