簡易檢索 / 詳目顯示

研究生: 李奕賢
I-Hsien Lee
論文名稱: 不同比例SiCp添加與不同熱處理方式對鎂基複合材料機械性質及疲勞之影響
Effect of Different Ratios of SiCp and Different Heat Treatment on the Mechanical Properties and Fatique Behavior of Magnesium Matrix Composites
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 徐茂濱
丘群
林景崎
曾有志
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 111
中文關鍵詞: 鎂基複合材料SiCp固溶處理時效處理疲勞試驗
外文關鍵詞: SiCp, Fatigue test
相關次數: 點閱:204下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用AZ61鎂鋁合金做為複合材料機材,以微米級SiCp為強化相,利用重力鑄造及機械攪拌的方式製備鎂基複合材料,SiCp添加量為1wt.%及2wt.%,切割為各實驗試片後進行T4固溶處理並進行水淬,再將T4固溶處理完成的一半試片進行175℃ T6時效處理,探討不同強化相添加比例及不同熱處理對於AZ61/SiCp複合材料之微觀結構、機械性質及疲勞之影響。
    從實驗結果中得到添加SiCp可以得到晶粒細化之效果,提升材料之降伏強度、極限抗拉強度及硬度但會受SiCp的影響降低複合材料的疲勞壽命及延展性。施做T6熱處理因為溫度對溶解度的影響使析出物生成,析出物硬脆的特性及強化相成核點的效果,會使鎂基複合材料的強度及硬度再次上升並且有效改善複合材料之疲勞壽命,但會因為過多的缺陷產生應力集中使材料延展性降低。


    This research use AZ61 magnesium alloy as the metal matrix and micro-SiC particle as the reinforcement. In addition, the amount of 1 and 2 weight percent of the reinforcement particles were added respectively into matrix and produced by gravity casting. After homogenization and aging heat treatment, the specimens were tested for the mechanical properties, microstructure and fatigue test. Discussions of the effects of different ratios reinforcement and heat treatment have been included in this study.
    According to the experimental results, when adding SiCp the grain size was found to decrease compared with pure magnesium alloys. Because of grain refinement, composites, yield strength, ultimate tensile strength and hardness were improved. However, the addition of reinforcement causes ductility and fatigue life to decrease. After aging heat treatment, β-phase was precipitated. In conclusion, aging heat treatment can improve strength , hardness and fatigue life effectively but decrease ductility because of stress concentration.

    摘要 i Abstract ii 內容目錄 iii 圖表目錄 viii 第一章 緒論 1 1.1. 前言 1 1.2. 文獻回顧 2 1.2.1 鑄造之相關文獻 3 1.2.2 鎂基複合材料相關文獻 4 1.2.3 熱處理對鎂合金的影響相關文獻 10 1.2.4鎂基複合材料之疲勞試驗相關文獻 15 1.3 文獻整理心得 22 1.4 研究動機與目的 23 第二章 研究理論基礎 25 2.1鎂合金與其基本性質 25 2.1.1鎂基本介紹 25 2.1.2鎂合金基本介紹 26 2.1.3鎂合金命名規則 28 2.2合金元素對鎂合金的影響 28 2.2.1鋁元素影響 29 2.2.2鋅元素對鎂合金的影響 30 2.2.3錳元素對鎂合金的影響 30 2.2.4其他少量元素對鎂合金影響 31 2.3鎂合金之強化機制 31 2.3.1晶粒細化 31 2.3.2析出強化 32 2.3.3固溶強化 32 2.2.4 Orowan強化 33 2.3鎂合金的熱處理原理 34 2.4 強化相SiCp之特性 36 2.5熱膨脹係數差異的影響 36 2.6疲勞裂縫的微觀成長機構 37 2.6疲勞試驗基礎 37 第三章 實驗方法與步驟 40 3.1實驗流程 40 3.2實驗材料 42 3.3實驗設備 43 3.3.1電阻式熔煉爐 43 3.3.2高溫熱處理爐 46 3.3.3濕式研磨機/拋光機 47 3.3.4動態拉伸試驗機 (Material Test System, MTS) 48 3.3.5光學顯微鏡 (Optical Microscope, OM) 49 3.3.6微型維克氏硬度機(Micro-Vickers Hardness Tester) 50 3.3.7 X光繞射分析儀 (X-ray Diffraction, XRD) 51 3.3.8掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 52 3.3.9 疲勞試驗機 53 3.4實驗規劃 54 3.4.1拉伸試片規劃 54 3.4.2疲勞試片規劃 54 3.4.3鎂基複合材料製備 55 3.4.4高溫熱處理 56 第四章 結果與討論 57 4.1 鎂基複合材料微觀結構分析 57 4.1.1光學顯微鏡OM金相分析 57 4.1.2 平均晶粒尺寸 61 4.1.3 SEM微觀結構分析 64 4.2 XRD分析 68 4.3 鎂基複合材料機械性質測試 71 4.3.1 硬度試驗 71 4.3.2 拉伸試驗 74 4.4 鎂基複合材料疲勞試驗 79 4.4.1疲勞參數設定 79 .4.2 疲勞試驗 79 4.4.3 疲勞試驗循環應力數據分析 83 4.4.4 疲勞試片破斷面 87 4.4.5 與本實驗室論文之比較 90 第五章 結論 91 參考文獻 93

    [1] 吳懿璋(2014),「強化相粒徑與含量對AZ61/SiCp鎂合金複合材料於擠製加工及後續退火製程在機械性質之研究」,國立臺灣科技大學機械工程學系碩士論文。
    [2] 陳辛樺(2014),「改善鎂合金及鎂基複合材料AZ61/SiCp 鑄錠品質並探討製程對其機械性質的影響」,國立臺灣科技大學機械工程學系碩士論文。
    [3] Wang, X., Wang, N., Wang, L., Hu, X., Wu, K., Wang, Y., and Huang, Y. “Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing.” Materials & Design, 57, (2014): 638-645.
    [4] 周子均(2018),「不同燒結溫度和不同比例WS2奈米管強化相使用粉末冶金方法製備機械性質強化的WS2/鎂合金奈米複合材料」,國立臺灣科技大學機械工程學系碩士論文。
    [5] K. Fevzi, G. Mehmet, and A. Tarik. “Microstructure and mechanical properties of a novel TiNi particulate reinforced AZ91 metal matrix composite. ” Materials Letters, 233, (2018): 12–15.
    [6] Sun J., Yang Z., Han J., Liu H., Song D., Jiang J., and Ma A., “High strength and ductility AZ91 magnesium alloy with multi-heterogenous microstructures prepared by high-temperature ECAP and short-time aging.” Materials Science and Engineering: A,Volume, 734,(2018): 485-490.
    [7] Naik, G. M., Gote, G. D., Narendranath, S., and Satheesh Kumar, S. S. “The impact of homogenization treatment on microstructure microhardness and corrosion behavior of wrought AZ80 magnesium alloys in 3.5 wt% NaCl solution.” Materials Research Express,Volume 5, Issue 8, August, (2018) .
    [8] Wang X. J., Hu X. S., Liu W. Q., Du J. F., Wu K., Huang Y. D., and Zheng M. Y. “Ageing behavior of as-cast SiCp/AZ91 Mg matrix composites.” Materials Science and Engineering, A,Volume 682,(2017): 491-500.
    [9] T. R. Praveen, H. Shivananda Nayaka, and S. Swaroop, “Influence of equal channel angular pressing and laser shock peening on fatigue behaviour of AM80 alloy.” Surface & Coatings Technology ,369,(2019): 221-227.
    [10] Wang, F., Liu, M., Sun, J., Feng, M., Jin, L., Dong, J., and Jiang, Y. “Effects of initial {10-12} twins on cyclic deformation and fatigue of magnesium alloy at low strain amplitudes. ” Materials Characterization,149,(2019): 118-123.
    [11] 洪品森(2009),「鎂基複合材料的製備及其熱處理後機械性質之研究」,國立中正大學機械工程學系研究所碩士論文。
    [12] 陸仁凱(2006),「7XXX系含鈧鋁合金的顯微結構與機械性質之分析」,國立中央大學機械工程研究所碩士論文。
    [13] 黃建忠(2013),「強化項粒徑對AZ61/SiCp鎂基複合材料鑄錠及擠型材之機械性質影響的研究」,國立臺灣科技大學機械工程學系碩士論文。
    [14] 林柏州(2014),「等徑轉角擠型(ECAE)製程對AM60/Al2O3p鎂基複合材料微結構及機械性質之影響」
    [15] Wang, Y., Liu, G., and Fan, Z., “Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment. ” Acta Materialia, 54,3, (2006): 689-699.
    [16] 李智堯(2018),「不同轉角及道次之等徑轉角擠製對AZ31/WS_2 INT鎂基複合材料微觀結構及機械性質影響之研究」,國立臺灣科技大學機械工程學系碩士論文。
    [17] 國立台灣科技大學林原慶教授,材料破壞與防治課堂講義。
    [18] 張紘瑋(2019),「添加不同比例MoS2及WS2製備AZ91鎂基複合材料之微觀結構以及機械性質研究」,國立臺灣科技大學機械工程學系碩士論文。
    [19] Nie K. B., Deng K. K., Wang X. J., Wanga T., and Wu K., “Influence of SiC nanoparticles addition on the microstructural evolution and mechanical properties of AZ91 alloy during isothermal multidirectional forging.” Materials Characterization,124, (2017): 14-24.
    [20] Zhang X., Chen Q., Li M., and Li F., “Texture evolution in semi-solid partial remelting and its effect on the microstructure of magnesium alloy.” Materials Letters, 237,(2019): 141-144.
    [21] Zhang L., Wang Q., Liao W., Guo W., Ye B., Haiyan Jiang, and Wenjiang Ding, “Effect of homogenization on the microstructure and mechanical properties of the repetitive-upsetting processed AZ91D alloy.” Journal of Materials Science & Technology ,33, (2017): 935-940.
    [22] A. Heczel, F. Akbaripanah, M. A. Salevati, R. Mahmudi, A.Vida, and J. Gubicza, “A comparative study on the microstructural evolution in AM60 alloy processed by ECAP and MDF. ” Journal of Alloys and Compounds ,763,(2018): 629-637.
    [23] Yua D., Zhang D., Dai Q., Lan W., Peng J., Xu J., Qi F., and Pan F., “Effect of stress ratio on high cycle fatigue properties in Mg-6Zn-1Mn alloy. ” Materials Science & Engineering ,A ,711,
    (2018): 624-632.
    [24] 陳宥蓉(2019),「不同溫度鍛造加工對AZ31/SiCp鎂基複合材料之機械性質及微觀結構影響」,國立臺灣科技大學機械工程學系碩士論文。
    [25] Murugan Subramani(2018),“Experimental and numerical analysis of mechanical and fatique behavior of magnesium alloy AZ61 with micro-SiC particals.”, 國立臺灣科技大學機械工程學系碩士論文。
    [26] N. Martynenko, E. Lukyanova, V. Serebryany, D. Prosvirnin, V. Terentiev , G. Raab, S. Dobatkin, and Y. Estrin, “Effect of equal channel angular pressing on structure, texture,mechanical and in-service properties of a biodegradable magnesium alloy. ” Materials Letters ,238,(2019): 218–221.
    [27] 蔡承勳(2013),「不同製程對AZ61/Al2O3P鎂基複合材料機械性質及疲勞之影響」,國立台灣科技大學機械工程系研究所碩士論文。
    [28] Yoshikazu N., Masahiko S., Hayata Y., Kaito A., and Shoich K., “Fatigue crack initiation site and propagation paths in high-cycle fatigue of magnesium alloy AZ31. ” International Journal of Fatigue ,123 ,(2019): 248-254.
    [29] S. M. A. K. Mohammed, Li D. J., Zeng X.Q., and Chen D. L., “Cyclic deformation behavior of a high zinc-containing cast magnesium alloy. ” International Journal of Fatigue ,125 ,(2019): 1-10.
    [30] Shu Y., Zhang X., Yu J., Tan L., Yin R., and Liu Q., “Tensile behaviors of fatigued AZ31 magnesium alloy. ” ScienceDirect, 28,(2018): 896-901.
    [31] Cai D., Han S., Yan D., Luo Z., Wang H., and Zhang Y., “Microstructure and fatigue behavior of variable polarity plasma arc welded Al-6.2Mg alloys. ” Journal of Materials Processing Tech. ,269 ,(2019): 128-134.
    [32] J. Denk, L. Whitmore, O. Huber, O. Diwald, and H. Saage, “Concept of the highly strained volume for fatigue modeling of wrought magnesium alloys. ” International Journal of Fatigue ,117 ,(2018): 283-291.

    QR CODE