簡易檢索 / 詳目顯示

研究生: 商名騏
Ming-Chi Shang
論文名稱: 薄膜電晶體元件特性及新式製程技術優化之研究
Investigation on the Thin-Film Transistor with Optimization of Novel Process scheme and Its Performance Improvement
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee
王錫九
Shea-Jue Wang
蔡永誠
Yung-Cheng Tsai
林智玲
Jyh-Ling Lin
顏文正
Wen-Cheng Yen
陳威州
Wei-Chou Chen
學位類別: 博士
Doctor
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 116
中文關鍵詞: 薄膜電晶體微波製程優化
外文關鍵詞: Thin-Film Transistor, microwave, Novel Process scheme
相關次數: 點閱:179下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對目前市場上較具有延伸性潛力的薄膜電晶體分別提出兩套新式的製程技術並加以優化達到降低成本與高穩定的電特性。首先,金屬氧化物薄膜電晶體一般都採用下閘極上接觸式的結構,因為要考慮到光罩間對位的誤差,而將其汲極和源極設計成與閘極各有一覆蓋區域,產生寄生電容而影響電晶體操作速度。另外為了防止在定義汲極和源極圖形時,蝕刻製程會對主動層造成傷害,傳統製程都會多加一層蝕刻阻擋層以保護下方材料,因此加入的製程增加了光罩數量影響了整體成本,以傳統的薄膜電晶體製程來說,四至五道黃光是無法避免的。因此我們提出了一種利用新式自我對準結構來製作薄膜電晶體元件,以減少寄生電容,且在光罩數目上縮減至兩道;並以接觸電阻分析、電性分析、電容-電壓特性、反向器上昇時間,與傳統非自我對準結構之元件作綜合性的比較以證明寄生電容效應的降低。再搭配鐵氟龍與二氧化矽組合之雙層保護層,其以熱蒸鍍製作之鐵氟龍用來防止a-IGZO薄膜因濺鍍二氧化矽的過程中所受到的電漿損害。並探討此方法製作的保護層與未使用保護層的元件,在不同大氣環境與閘極偏壓下之穩定度。
    其次,我們提出了一套新式低成本的微波加熱技術,我們將此技術運用於聚乙烯苯酚(PVP)有機物的交聯,並將其作為閘極絕緣層以製作有機薄膜電晶體。傳統微波加熱的技術需使用較高的微波功率才能達到有效的加熱效果,也因此消耗了不少成本,另外傳統微波加熱技術因為是使用極化極性分子而造成的旋轉延遲損耗所產生的熱能,因此在這先天性的物理局限上,微波的運用被大為縮減。另外在傳統聚乙烯苯酚(PVP)有機物的交聯使用烤箱的傳導性加熱,熱在傳導到主體前會快速衰退,在熱能的運用上相當缺乏效率,因此拉長了整體製程時間。為了克服以上問題,我們運用了微波在金屬表面上衰退成表面電流的特性用,將閘極金屬快速升溫以快速交聯其上方之閘極絕緣層。另外針對此新式微波加熱技術的優化,我們分別探討壓力,功率,時間之間的影響,並透過FTIR及AFM等物理分析,加以佐證。而優化過後的技術大幅縮短了交聯的時間。從傳統一個小時的烤箱加熱縮減至只需五分鐘。且利用降低壓力的方式也成功的把傳統需要幾千瓦的微波功率縮減至只需五十瓦。因此相信此新式微波技術相當具其潛力,可大幅的提高能量的運用達到了低成本節能的目標。


    In this thesis, two novel process scheme were proposed for thin-film transistors. At first , we focus on Metal oxide thin-film transistor (TFT) its high mobility and transparency, The Metal oxide thin-film transistor (TFT) that are employed in displays are typically fabricated using back-channel-etching structure and five photomasks, including the definition of an etching-stop (ES) layer to protect the a-IGZO active layer from damage caused by etching the source/drain (S/D) electrodes. However, TFTs that involve an ES require a misalignment margin for the ES to ensure the good contact between the S/D and the induced channel; thus, high parasitic capacitances (Cgd, Cgs) could occur, decreasing the operational speed of the TFT circuit. In this study, a new two-photo-mask process with continuous-etching Scheme was proposed for fabricating a-IGZO TFTs that exhibit self-aligned structures but lack ES layers. And the ITO metal was designed as S/D metal to meet the requirement of the continuous etching process. Thus, S/D metal, IGZO and gate insulator can simultaneously be etched. Combining the BUV exposure and backside-lift-off (BLO) schemes can prevent the damage when etching the S/D electrodes, reduce the number of photo-masks required during fabrication, and minimize the parasitic capacitance.
    Second, a Microwave-Induction Heating (MIH) scheme is proposed for the PVP gate insulator cross-linking process to replace the traditional oven heating cross-linking process. Traditional microwave annealing is known to be effective for heating because of its advantages include thermal uniformity, rapid heating process, shortened manufacturing period, and low thermal budget. In previous study, the microwave annealing scheme is always used for heating the semiconductor film because some materials cannot be absorbed by the microwave energy, such as insulators. Therefore, materials heated by using microwave radiation will be limited by the selective-heating characteristic of microwave. In addition, the high microwave power was also a serious issues leading to a trade-off between fabrication cost and device performance. In this study, it is the first time that microwave-Induction Heating (MIH) scheme is proposed for the PVP gate insulator cross-linking process to replace the traditional oven heating process. As compared traditional oven heating, the heating time is significantly decreased from 1 hour to 5 minutes by using MIH scheme and the used power is reduced to about 50 W. Therefore, for the cross-linking process of PVP, the throughput can be reduced by above 50% and the power can be also significantly reduced. Thus, it believes that the proposed MIH scheme will be a low thermal budget process, which is more suitable for flexible devices application in the future. We therefore suggest this technology has a great potential to replace the traditional thermal heating for the PVP gate insulator cross-linking process.

    Abstract (in Chinese) I Abstract III Acknowledgement (in Chinese) V Contents VI List of Tables IX List of Figures X Introduction I 1.1 Overview of Thin-Film Transistors I 1.1.1 Metal-Oxide Thin-Film Transistors II 1.1.2 Organic Thin-Film Transistors II 1.2 Semiconductor Materials IV 1.2.1 Metal-Oxide Semiconductor IV 1.2.2 Organic Thin-Film Transistors IV 1.3 Charge Carrier Transport in Semiconductors V 1.3.1 Metal-Oxide Semiconductor V 1.3.2 Organic Thin-Film Transistors VI 1.4 Device Structures and Operation of TFTs VIII 1.4.1 Device Structures of TFTs VIII 1.4.2 Operation of TFTs VIII 1.5 Motivation IX 1.6 Thesis Organization XI Device Fabrication and Electrical Parameters Extraction XX 2.1 Materials Selection XX 2.1.1 Gate Electrode XX 2.1.2 Gate Insulator XX 2.1.3 Semiconductor Layer XXI 2.1.4 Source and Drain Electrodes XXI 2.2 Device Fabrication Process XXIII 2.3 Measurement and Characterization for TFTs XXIV 2.3.1 Electrical Measurement XXIV 2.3.2 Electrical Characterization XXV A Self-Aligned a-IGZO Thin-Film Transistor Using a New Two-Photo-Mask Process with a Continuous Etching Scheme XL 3.1 Introduction XL 3.2 Experiments XLI 3.3 Results and Discussion XLII 3.4 Conclusion XLIV Teflon/SiO2 Bilayer Passivation for Improving the Electrical Reliability of Oxide TFTs Fabricated Using a New Two-Photomask Self-Alignment Process LI 4.1 Introduction LI 4.2 Experiments LIV 4.3 Results and Discussion LIV 4.4 Conclusion LIX Microwave Induction Heating Scheme for Insulator-Heating LXVII 5.1 Introduction LXVII 5.2 Experiments LXVIII 5.3 Results and Discussion LXIX 5.4 Conclusion LXXII Optimization of Poly(4-vinylphenol) Cross-linking process for Organic Thin-Film Transistors by using Low-Power Microwave-Induction Heating Procedure LXXVII 6.1 Introduction LXXVII 6.2 Experiments LXXIX 6.3 Results and Discussion LXXXI 6.4 Conclusion LXXXV Conclusions and Future Works XCVI 7.1 Conclusions XCVI 7.2 Future Works XCVI References XCVIII Resume (個人簡歷) CXII Publication List (個人學術著作列表) CXIII

    C. L. Fan, Y. Z. Lin, and C. H. Huang, “Combined Scheme of UV/Ozone and HMDS Treatment on a Gate Insulator for Performance Improvement of a Low-Temperature-Processed Bottom-Contact OTFT,” Semiconductor Science and Technology, Vol. 26, No. 3, pp. 045006-1-045006-5 (2011).
    T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, “Flexible Organic Transistors and Circuits with Extreme Bending Stability,” Nature Materials, Vol. 9, No. 12, pp. 1015-1022 (2010).
    A. C. Mayer, M. T. Lloyd, D. J. Herman, T. G. Kasen, and G. G. Malliaras, “Postfabrication Annealing of Pentacene-Based Photovoltaic Cells,” Applied Physics Letters, Vol. 85, No. 25, pp. 6272-6274 (2004).
    C. C. Lee, C. H. Yuan, S. W. Liu, and Y. S. Shih, “Efficient Deep Blue Organic Light-Emitting Diodes Based on Wide Band Gap 4-Hydroxy-8-Methyl-1.5-Naphthyridine Aluminum Chelate as Emitting and Electron Transporting Layer,” Journal of Display Technology, Vol. 7, No. 8, pp. 454-458 (2011).
    K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, Vol. 432, No. 7016, pp. 488 (2004).
    E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L.Pereira, and R. Martins, “Fully transparent ZnO thin-film transistor produced at room temperature,” Advanced Materials, Vol. 17 No.5, pp. 590-594 (2005).
    L. Hoffman, B. H. Norrs, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Applied Physics Letters, Vol. 82, No. 5, pp. 733 (2003).
    M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, “High mobility bottom gate IGZO thin film transistors with Si Ox etch stopper,” Applied Physics Letters, Vol.90, No. 21 pp.212114 (2007)
    J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment” Applied Physics Letters, Vol. 90, No. 26 pp. 262106 (2007).
    J. K. Jeong, J. H. Jeong, H. W. Yang, J.-S. Park, Y.-G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel” Applied Physics Letters, Vol. 91, No.11 pp.113505 (2007)
    H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, “Biexciton emission from high-quality ZnO films grown on epitaxial GaN by plasma-assisted molecular-beam epitaxy,” Applied Physics Letters, Vol. 77, No. 4 pp.3761 (2000).
    Ukai, Y. “TFT-LCD manufacturing technology current status and future prospect”. In Proceedings of the International Workshop on Physics of Semiconductor Devices, Mumbai, India, 16–20 December 2007; pp. 29–34 (2007).
    Choi, Y.W.; Lee, J.N.; Jang, T.W. “Thin-film transistors fabricated with Poly-Si films crystallized at low temperature by microwave annealing,” IEEE Electron Device Lett, Vol.20, pp. 2–4 (1999).
    Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. “Thin-film transistor fabricated in single-crystalline transparent oxide emiconductor,” Science, Vol. 300, pp.1269–1272.(2003)
    J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder, and X. Zhan, “n-Type Organic Semiconductors in Organic Electronics,” Advanced Materials, Vol. 22, No. 34, pp. 3876-3892 (2010).
    C. D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Advanced Materials, Vol. 14, No. 2, pp. 99-117 (2002).
    A. Tsumura, K. Koezuka, and T. Ando, “Macromolecular Electronic Device: Field-Effect Transistor with a Polythiophene Thin Film,” Applied Physics Letters, Vol. 49, No. 18, pp. 1210–1212 (1986).
    G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu, and F. Garnier, “A Field-Effect Transistor Based on Conjugated Alpha-Sexithienyl,” Solid State Communications, Vol. 72, No. 4, pp. 381–384 (1989).
    J. M. Shaw, and P. F. Seidler, “Organic Electronics: Introduction,” IBM Journal of Research and Development, Vol. 45, No. 1, pp. 3–9 (2001).
    C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic Thin-Film Transistor-Driven Polymer-Dispersed Liquid Crystal Displays on Flexible Polymeric Substrates,” Applied Physics Letters, Vol. 80, No. 6, pp. 1088–1090 (2006).
    M. Mizukami, N. Hirohata, T. Iseki, K. Ohtawara, T. Tada, S. Yagyu, T. Abe, T. Suzuki, Y. Fujisaki, Y. Inoue, S. Tokito, and T. Kurita, “Flexible AM OLED Panel Driven by Bottom-Contact OTFTs,” IEEE Electron Device Letters, Vol. 27, No. 4, pp. 249–251 (2006).
    R. Wisnieff, “Display Technology: Printing Screens,” Nature, Vol. 394, No. 6690, pp. 225–227 (1998).
    R. Rotzoll, S. Mohapatra, V. Olariu, R. Wenz, M. Grigas, K. Dimmlerb, O. Shchekin, and A. Dodabalapur, “Radio Frequency Rectifiers Based on Organic Thin-Film Transistors,” Applied Physics Letters, Vol. 88, No. 12, pp. 123502–123502-3 (2006).
    T. Kamiya, K. Nomura, and H. Hosono, "Present status of amorphous In–Ga–Zn–O thin-film transistors," Science and Technology of Advanced Materials, vol. 11, p. 044305,(2010).
    H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," Journal of non-crystalline solids, vol. 352, pp. 851-858, (2006).
    T. Kamiya and H. Hosono, "Material characteristics and applications of transparent amorphous oxide semiconductors," NPG Asia Materials, vol. 2, pp. 15-22, (2010)
    G. Horowitz, “Organic Thin Film Transistors: From Theory to Real Devices,” Journal of Materials Research, Vol. 19, No. 7, pp. 1946–1962 (2004).
    S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon, and W. K. Kim, “High-Performance Polymer TFTs Printed on a Plastic Substrate,” IEEE Transactions on Electron Devices, Vol. 49, No. 11, pp. 2008–2015 (2002).
    B. Kumar, B. K. Kaushik, and Y. S. Negi, “Perspectives and Challenges for Organic Thin Film Transistors: Materials, Devices, Processes and Applications,” Journal of Materials Science: Materials in Electronics, Vol. 25, No. 1, pp. 1–30 (2014).
    B. C. Shekar, J. Lee, and S. W. Rhee, "Organic Thin Film Transistors: Materials, Processes and Devices," Korean Journal of Chemical Engineering, Vol. 21, No. 1, pp. 267–285 (2004).
    J. H. Schon, “New Phenomena in High Mobility Organic Semiconductors,” Physica Status Solidi (b), Vol. 226, No. 2, pp. 257–270 (2001).
    J. H. Schon, and B. Batlogg, “Trapping in Organic Field-Effect Transistors,” Journal of Applied Physics, Vol. 89, No. 1, pp. 336–342 (2001).
    H. N. Lee, J. Kyung, S. K. Kang, D. Y. Kim, M. C. Sung, S. J. Kim, C. N. Kim, H. G. Kim, and S. t. Kim, "68.2: 3.5 Inch QCIF+ AM‐OLED Panel Based on Oxide TFT Backplane," in SID Symposium Digest of Technical Papers, pp. 1826-1829.(2007)
    G. Horowitz, “Organic Field-Effect Transistors,” Advanced Materials, Vol. 10, No. 5, pp. 365–377 (1998).
    T. Minari, T. Miyadera, K. Tsukagoshi, Y. Aoyagi, and H. Ito, “Charge Injection Process in Organic Field-Effect Transistors,” Applied Physics Letters, Vol. 91, No. 5, pp. 053508-1–053508-3 (2007).
    S. Schiefer, M. Huth, A. Dobrinevski, and B. Nickel, “Determination of the Crystal Structure of Substrate-Induced Pentacene Polymorphs in Fiber Structured Thin Films,” Journal of the American Chemical Society, Vol. 129, No. 34, pp. 10316–10317 (2007).
    J. R. Brews, K. K. Ng, and R. K. Watts, Submicron Integrated Circuits, John Wiley and Sons, NY, pp. 9–86 (1989).
    H. W. Zan, K. H. Yen, P. K. Liu, K. H. Ku, C. H. Chen, and J. Hwang, “Low-Voltage Organic Thin Film Transistors with Hydrophobic Aluminum Nitride Film as Gate Insulator,” Organic Electronics, Vol. 8, No. 4, pp. 450–454 (2007).
    A. Lodha and R. Singh, “Prospects of Manufacturing Organic Semiconductor-Based Integration Circuits,” IEEE Transactions on Semiconductor Manufacturing, Vol. 14, No. 3, pp. 281–296 (2001).
    K. Shibata, K. Ishikawa, H. Takezoe, H. Wada, and T Mori, “Contact Resistance of Dibenzotetrathiafulvalene-Based Organic Transistors with Metal and Organic Electrodes,” Applied Physics Letters, Vol. 92, No. 2, pp. 023305-1–023305-3 (2008).
    N. Takahashi, A. Maeda, K. Uno, E. Shikoh, Y. Yamamoto, H. Hori, Y. Kubozono, and A. Fujiwara, “Output Properties of C60 Field-Effect Transistors with Different Source/Drain Electrodes,” Applied Physics Letters, Vol. 90, No. 8, pp. 083503-1–083503-3 (2007).
    H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, “Contact Resistance in Organic Thin-Film Transistors,” Solid-State Electronics, Vol. 47, No. 2, pp. 297–301 (2003).
    J. Park, J. M. Kang, D. W. Kim, and J. S. Choi, “Contact Resistance Variation in Top-Contact Organic Thin-Film Transistors with the Deposition Rate of Au Source/Drain Electrodes,” Thin Solid Films, Vol. 518, No. 22, pp. 6232–6235 (2010).
    T. Hirao, M. Furuta, T. Hiramatsu, T. Matsuda, C. Li, H. Furuta, H. Hokari, M. Yoshida, H. Ishii, and M. Kakegawa, “Bottom-gate zinc oxide thinfilm transistors (ZnO TFTs) for AM-LCDs.” IEEE Trans. Electron Devices Vol. 55, pp.3136–3142. (2008)
    D. Paine, B.Yaglioglu, Z. Beiley; and S. H. Lee, “Amorphous IZO based transparent thin film transistors,” Thin Solid Films, Vol. 516, pp.5894–5898. (2008)
    H. Kumomi,; K. Nomura,; T. Kamiya,; and H. Hosono,; “Amorphous oxide channel TFTs,” Thin Solid Films Vol. 516, pp. 1516–1522 (2008)
    Y. Ukai, “TFT-LCD manufacturing technology Current status and futureprospect, ” in Proc. Int. Workshop Phys. Semicond. Devices, pp. 29–34. (2007)
    Y. W. Choi, J. N .lee, T. W. Jang, “Thin-Film Transistors Fabricated with Poly-Si Films Crystallized at Low Temperature by Microwave Annealing”. IEEE Electron Device Lett., Vol. 20,pp. 2–4.(1999)
    K. Nomura, H. Ohta, K. Ueda, T. Kamiya,; M. Hirano,; and H. Hosono,; “Thin-film transistor fabricated in single-crystalline transparent oxide emiconductor. Science “, Vol. 300, pp.1269–1272. (2003)
    K. Nomura, H. Ohta, A. Takagi, T.Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistorsusing amorphous oxide semiconductor,” Nature, Vol 432, 488–492.(2004)
    Liu, S.; Yu, M.; Lin, C.; Ho, G.; Cheng, C.; Lai, C.; Lin, C.; King, Y.; and Yeh, Y.; “ Influence of passivation layers on characteristics of a-IGZO thin-film transistors,” IEEE Electron Device Lett., Vol.32, pp.161–163. (2011)
    Kodkani, R.M.; and Larson, L.E.; “A 25 GHz quadrature voltage controlled ring oscillator in 0.12 μm Si Ge HBT”. in Proc. IEEE SiRF pp.383–386 (2006).
    Geng, D.; Kang, D.H.; and Jang, J.; “High-Performance Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistor With a Self-Aligned Etch Stopper Patterned by Back-Side UV Exposure,” IEEE Electron Device Lett., Vol. 32, pp.758–760. (2011)
    Park, J.; Kim, S.; and Kim, C.; “High-performance amorphous gallium indium zinc oxide thin-film transistors through N2O plasma passivation.” Appl. Phys. Lett., Vol.93, pp. 053505-1–053505-3. (2008)
    Uhm, H.; Lee, S.; Kim, W.; and Park, J.; “A Two-Mask Process for Fabrication of Bottom-Gate IGZO-Based TFTs,” IEEE Electron Device Lett., Vol. 33, pp.543–545. (2012)
    Mourey, D.A.; Zhao, D.A.; Jackson, T.N.; “Self-aligned-gate ZnO TFT circuits,” IEEE Electron Device Lett. 31, pp. 326–328. (2010)
    Chen, T.L.; Hsu, T.Y.; Lin, H.Y.; Chou, C.H.; Lin, H.H.; and Liu, C.W.; “Enhanced current drive of double-gate α-IGZO thin-film transistors.” IEEE Electron Device Lett., 34, 417-419.(2013)
    Kamiya, T.; Nomura, K.; and Hosono, H.; “Present status of amorphous In–Ga–Zn–O thin-film transistors.” Sci Technol. Adv. Mater., Vol.11, pp.044305-1–044305-23. (2010)
    Seok, M.J.; Choi, M.H.; Mativenga, M.; Kim, D.Y.; and Jang, J.; “A Full-Swing a-IGZO TFT-Based Inverter With a Top-Gate-Bias-Induced Depletion Load” IEEE Electron Device Lett.,Vol. 32, pp.1089-1091. (2011)
    Han, D.S.; Kang, Y.J.; Park, J.H.; Jeon, H.T.; and Park, J.W.; “Influence of molybdenum source/drain electrode contact resistance in amorphous zinc–tin-oxide (a-ZTO) thin film transistors”. MATER RES BULL, In Press, Corrected Proof. (2014)
    Hirao, T.; Furuta, M.; Hiramatsu, T.; Matsuda, T.; Li, C.; Furuta, H.; Hokari, H.; Yoshida, M.; Ishii, H.; Kakegawa, M. “Bottom-gate zinc oxide thin film transistors (ZnO TFTs) for AM-LCDs.” IEEE Trans. Electron Devices, Vol. 55, pp.3136–3142. (2008)
    Paine, D.; Yaglioglu, B.; Beiley, Z.; Lee, S.H. “Amorphous IZO based transparent thin film transistors, “ Thin Solid Films, Vol.516, pp.5894–5898.(2008)
    Kumomi, H.; Nomura, K.; Kamiya, T.; Hosono, H. “Amorphous oxide channel TFTs.” Thin Solid Films,Vol. 516, pp.1516–1522. (2008)
    Ukai, Y. “TFT-LCD manufacturing technology current status and future prospect. “ In Proceedings of the International Workshop on Physics of Semiconductor Devices, Mumbai, India, pp. 29–34 (2007).
    Choi, Y.W.; Lee, J.N.; Jang, T.W. “Thin-film transistors fabricated with Poly-Si films crystallized at low temperature by microwave annealing.” IEEE Electron Device Lett., Vol 20, pp. 2–4.(1999)
    Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. “Thin-film transistor fabricated in single-crystalline transparent oxide emiconductor,” Science,Vol. 300, pp.1269–1272.( 2003)
    Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. “Room-temperature fabrication of transparent flexible thin-film transistorsusing amorphous oxide semiconductor.” Nature,Vol. 432, pp. 488–492. (2004)
    Uhm, H.; Lee, S.; Kim, W.; Park, J. “A two-mask process for fabrication of bottom-gate IGZO-based TFTs,” IEEE Electron Device Lett., Vol. 33, pp. 543–545. (2012)
    Geng, D.; Kang, D.H.; Jang, J. “High-performance amorphous Indium-Gallium-Zinc-Oxide thin-film transistor with a self-aligned etch stopper patterned by back-side UV exposure.”IEEE Electron Device Lett., Vol. 32, pp.758–760. (2011)
    Park, J.; Kim, S.; Kim, C. “High-performance amorphous gallium indium zinc oxide thin-film transistors through N2O plasma passivation.“ Appl. Phys. Lett., Vol. 93, pp.053505:1–053505:3. (2008)
    Fan, C.L.; Shang, M.C.; Li, B.J.; Lin, Y.Z.; Wang, S.J.; Lee, W.D. “A self-aligned a-IGZO thin-film transistor using a new two-photo-mask process with a continuous etching scheme.” Materials Vol. 7, pp.5761–5768.(2014)
    Tropsha, Y.G.; Harvey, N.G. “Activated rate theory treatment of oxygen and water transport through silicon oxide/poly(ethylene terephthalate) composite barrier structures.” J. Phys. Chem. B Vol. 101, pp.2259–2266. (1997)
    Lin, W.K.; Liu, K.C.; Chen, J.N.; Hu, S.C.; Chang, S.T. “The influence of fabrication process on top-gate thin-film transistors“ Thin Solid Films, Vol.519, pp.5126–5130. (2011)
    Fan, C.L.; Lin, Y.Z.; Chiu, P.C.; Wang, S.J.; Lee, W.D. “Teflon/SiO2 bilayer passivation for improving the electrical reliability of pentacene-based organic thin-film transistors.” Org. Electronics, Vol. 14, pp.2228–2232. (2013)
    Fan, C.L.; Yang, T.H.; Chiu, P.C. “Performance improvement of bottom-contact pentacene-based organic thin-film transistors by inserting a thin polytetrafluoroethylene buffer layer.” Appl. Phys. Lett. Vol. 97, pp.143306:1–143306:3. (2010)
    Rapisarda, M.; Simeone, D.; Fortunato, G.; Valletta, A.; Mariucci, L. Pentacene “thin film transistors with (polytetrafluoroethylene) PTFE-like encapsulation layer.” Org. Electronics, 12, pp.119–124. (2011)
    Chen, T.L.; Hsu, T.Y.; Lin, H.Y.; Chou, C.H.; Lin, H.H.; Liu, C.W. “Enhanced current drive of double-gate α-IGZO thin-film transistors.” IEEE Electron Device Lett., Vol.34, pp.417–419. (2013)
    Kamiya, T.; Nomura, K.; Hosono, H. “Present status of amorphous In–Ga–Zn–O thin-film transistors.” Sci Technol. Adv. Mater., Vol.11, pp. 044305:1–044305:23. (2010)
    Seok, M.J.; Choi, M.H.; Mativenga, M.; Kim, D.Y.; Jang, J. ”A full-swing a-IGZO TFT-based inverter with a top-gate-bias-induced depletion load.” IEEE Electron Device Lett., Vol.32, 1089–1091.(2011)
    Park, J.S.; Jeong, J.K.; Chung, H.J.; Mo, Y.G.; Kim, H.D. Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Appl. Phys. Lett. 2008, 92, 072104:1–072104:3.
    Kim, S.J.; Lee, S.Y.; Lee, Y.W.; Lee, W.G.; Yoon, K.S.; Kwon, J.Y.; Han, M.K. “Effect of channel layer thickness on characteristics and stability of amorphous hafnium–indium–zinc oxide thin film transistors.” Jpn. J. Appl. Phys., Vol. 50, pp.024104:1–024104:3. (2011)
    Chen, F.H.; Pan, T.M.; Chen, C.H.; Liu, J.H.; Lin, W.H.; Chen, P.H. “Two-step electrical degradation behavior in a-InGaZnO thin-film transistor under gate-bias stress.” IEEE Electron Device Lett. Vol.34, pp. 635–637.( 2013)
    Groner, M.D.; George, S.M.; McLean, R.S.; Carcia, P.F. “Gas diffusion barriers on polymers using Al2O3 atomic layer deposition. “Appl. Phys. Lett.,Vol. 88, pp.051907:1–051907:3. (2006)
    C. L. Fan, P. C. Chiu, and C. C. Lin, “Low-Temperature-Deposited SiO2 Gate Insulator With Hydrophobic Methyl Groups for Bottom-Contact Organic Thin-Film Transistors,” IEEE Electron Device Lett. Vol.31 pp.1485 (2010).
    C. L. Fan, Y. Z. Lin, W. D. Lee, S. J. Wang, and C. H. Huang, “Improved pentacene growth continuity for enhancing the performance of pentacene-based organic thin-film transistors,” Org. Electron. Vol.13 pp. 2924 (2012).
    C. Y. Wei, F. Adriyanto, Y. J. Lin, Y. C. Li, T. J. Huang, D. W. Chou, and Y. H. Wang, “Pentacene-based thin-film transistors with a solution-process hafnium oxide insulator,” IEEE Electron Device Lett. Vol.30 pp.1039. (2009)
    S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, “Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance,” Appl. Phys. Lett. Vol. 88 pp.162109 (2006).
    Y. H. Noh, S. Y. Park, S. M. Seo, and H. H. Lee, “Root cause of hysteresis in organic thin film transistor with polymer dielectric,” Org. Electron. Vol. 7 pp.271 (2006).
    G. Gu, and M. G. Kane, “Moisture induced electron traps and hysteresis in pentacene based organic thin-film transistors,” Appl. Phys. Lett. Vol. 92 pp.053305 (2008).
    T. H. Kim, C. G. Han, and C. K. Song, “Instability of threshold voltage under constant bias stress in pentacene thin film transistors employing polyvinylphenol gate dielectric,” Thin Solid Films, Vol. 516 pp.1232 (2008).
    T. Umeda, D. Kumaki, and S. Tokito, “High air stability of threshold voltage on gate bias stress in pentacene TFTs with a hydroxyl-free and amorphous fluoropolymer as gate insulators,” Org. Electron.Vol. 9 pp.545 (2008).
    X. Cheng, M. Caironi, Y. Y. Noh, J. Wang, C. Newman, H. Yan, A. Facchetti, and H. Sirringhaus, “Air stable cross-linked cytop ultrathin gate dielectric for high yield low-voltage top-gate organic field-effect transistors” Chem. Mater., Vol. 22 pp.1559 (2010).
    S. H. Kim, J. Jang, H. Jeon, W. M. Yun, S. Nam, and C. E. Park, “Hysteresis-free pentacene field-effect transistors and inverters containing poly(4-vinyl phenol-co-methyl methacrylate) gate dielectrics” Appl. Phys. Lett., Vol. 92 pp.183306 (2008).
    L. Jiang, J. Zhang, D. Gamota, and C. G. Takoudis, “Organic thin film transistors with novel thermally cross-linked dielectric and printed electrodes on flexible substrates” Org. Electron., Vol. 11 pp.959 (2010).
    H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, “High-mobility polymer gate dielectric pentacene thin film transistors” Journal of Applied Physics. Vol. 92 pp.5259 (2002).
    P. Liu, Y. Wu, Y. Li, B. S. Ong, and S. Zhu, “Enabling Gate Dielectric Design for All Solution-Processed, High-Performance, Flexible Organic Thin-Film Transistors” J. Am. Chem. Soc. Vol. 128 pp.4554 (2006).
    S. Mototani, S. Ochiai, X. Wang, K. Kojima, A. Ohashi and T. Mizutani, “Performance of Organic Field-Effect Transistors with Poly(3-hexylthiophene) as the Semiconductor Layer and Poly(4-vinylphenol) Thin Film Untreated and Treated by Hexamethyldisilazane as the Gate Insulator” Jpn. J. Appl. Phys. Vol.47 pp.496 (2008).
    J. Jang, S. H. Kim, S. Nam, D. S. Chung, C. Yang, W. M. Yun, C. E. Park and J. B. Koo, “Hysteresis-free organic field-effect transistors and inverters using photocrosslinkable poly(vinyl cinnamate) as a gate dielectric” Appl. Phys. Lett. Vol. 92 pp.143306 (2008).
    S. De Vusser, J. Genoe and P. Heremans, “Influence of transistor parameters on the noise margin of organic digital circuits” IEEE Electron DEV. Vol. 53 pp.601 (2006)
    S. Steudel, S. De. Vusser, K. Myny, M. Lenes, J. Genoe and P. Heremans, “Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags” J. Appl. Phys., Vol. 99 pp. 114519 (2006).
    H. L. Hortensius, A. Öztürk, P. Zeng, E. F. C. Driessen, and T. M. Klapwijk, “Microwave-induced nonequilibrium temperature in a suspended carbon nanotube,” Appl. Phys. Lett., Vol. 100, no. 22, pp. 223112-1 – 223112-3. (2012)
    L. F. Teng, P. T. Liu, Y. J Lo, and Y. J. Lee, “Effects of microwave annealing on electrical enhancement of amorphous oxide semiconductor thin film transistor,” Appl. Phys. Lett., vol. 101, no. 13, pp. 132901-1 – 223112-5. (2012)
    C. S. Fuh, P. T. Liu, L. F. Teng, S. W. Hung, Y. J. Lee, and H. P. D. Shieh, ” Effects of Microwave Annealing on Nitrogenated Amorphous In-Ga-Zn-O Thin-Film Transistor for Low Thermal Budget Process Application,” IEEE Electron Device Lett., vol. 34, no 9, pp.1157–1159, (2013)
    K. W. J and W. J. C, “Improvement in gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors using microwave irradiation,” Appl. Phys. Lett., vol. 105, no. 21, pp. 213505-1 –213505-5.(2014)
    S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, “Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance,” Appl. Phys. Lett., vol. 88, no. 16, pp. 162 109-1–162 109-3, (2006).
    Y. H. Noh, S. Y. Park, S. M. Seo, and H. H. Lee, “Root cause of hysteresis in organic thin film transistor with polymer dielectric,” Org. Electron., vol. 7, no. 5, pp. 271–275, Oct. (2006).
    G. Gu, and M. G. Kane, “Moisture induced electron traps and hysteresis in pentacene based organic thin-film transistors,” Appl. Phys. Lett., vol. 92, no. 5, pp. 053 305-1–053 305-3, Feb. (2008).
    T. H. Kim, C. G. Han, and C. K. Song, “Instability of threshold voltage under constant bias stress in pentacene thin film transistors employing polyvinylphenol gate dielectric,” Thin Solid Films, vol. 516, no. 6, pp. 1232–1236, Jan. (2008).
    T. Umeda, D. Kumaki, and S. Tokito, “High air stability of threshold voltage on gate bias stress in pentacene TFTs with a hydroxyl-free and amorphous fluoropolymer as gate insulators,” Org. Electron., vol. 9, no. 4, pp. 545–549, Aug. (2008).
    X. Cheng, M. Caironi, Y. Y. Noh, J. Wang, C. Newman, H. Yan, A. Facchetti, and H. Sirringhaus, “Air stable cross-linked Cytop ultrathin gate dielectric for high yield low-voltage top-gate organic field-effect transistors,” Chem. Mater., vol. 22, no. 4, pp. 1559–1566, Jan. (2010).
    S. H. Kim, J. Jang, H. Jeon, W. M. Yun, S. Nam, and C. E. Park,“Hysteresis-free pentacene field-effect transistors and inverters containing poly(4-vinyl phenol-co-methyl methacrylate) gate dielectrics,” Appl. Phys. Lett., vol. 92, no. 18, pp. 183 306-1–183 306-3, May. (2008).
    L. Jiang, J. Zhang, D. Gamota, and C. G. Takoudis, “Organic thin film transistors with novel thermally cross-linked dielectric and printed electrodes on flexible substrates,” Org. Electron., vol. 11, no. 5, pp. 959–963, May. (2010).
    H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, “High-mobility polymer gate dielectric pentacene thin film transistors,” Journal of Applied Physics., vol. 92, no. 9, pp. 5259–5263, Oct. (2002).
    P. Liu, Y. Wu, Y. Li, B. S. Ong, and S. Zhu, “Enabling Gate Dielectric Design for All Solution-Processed, High-Performance, Flexible Organic Thin-Film Transistors” J. Am. Chem. Soc., vol. 128 no. 14, pp. 4554–4555, Mar. (2006).
    S. Mototani, S. Ochiai, X. Wang, K. Kojima, A. Ohashi, T. Mizutani, “Performance of Organic Field-Effect Transistors with Poly(3-hexylthiophene) as the Semiconductor Layer and Poly(4-vinylphenol) Thin Film Untreated and Treated by Hexamethyldisilazane as the Gate Insulator” Jpn. J. Appl. Phys., vol. 47 no. 1, pp. 496–500, Jan. (2008).
    J. Jang, S. H. Kim, S. Nam, D. S. Chung, C. Yang, W. M. Yun, C. E. Park and J. B. Koo, “Hysteresis-free organic field-effect transistors and inverters using photocrosslinkable poly(vinyl cinnamate) as a gate dielectric”, Appl. Phys. Lett., vol. 92, no. 143306, pp. 143306-1 – 143306-3. Apr. (2008)
    S. De Vusser, J. Genoe and P. Heremans, “Influence of transistor parameters on the noise margin of organic digital circuits,” IEEE T. ELECTRON. DEV., vol. 53, no. 4, pp. 601– 610. Apr. (2006).
    S. Steudel, S. De. Vusser, K. Myny, M. Lenes, J. Genoe and P. Heremans, “Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags,” J. Appl. Phys., vol. 99, no. 11, pp. 114519-1 – 143306-7. Jun. (2006).
    C. L. Fan, M. C. Shang, M. Y. Hsia, S. J. Wamg, B. R. Hung and W. D. Lee, “Poly(4-vinylphenol) Gate Insulator with Cross-linking using a Rapid Low-Power Microwave Induction Heating Scheme for Organic Thin-Film-Transistors,” APL Mater., vol. 4, no. 3, pp. 036105-1 –036105-5. Jan. (2016).

    QR CODE