簡易檢索 / 詳目顯示

研究生: 石禮榮
Li-long Shih
論文名稱: 3D無閥式微幫浦之研發
Development of 3D valveless micropump
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 孫珍理
Chen-Li Sun
汪家昌
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 110
中文關鍵詞: 微流道微幫浦壓電無閥式
外文關鍵詞: SDM(Shape Deposition Manufacturing), piezoelectric, micro-channel, micro-pump
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

目前國內外研究中,大都利用微機電製程技術來製作無閥式微幫浦,由於受限於微機電製程技術,進口與出口流道的設計通常為彼此平行,屬於2.5D的幾何特徵。本研究研發3D壓電驅動無閥式微幫浦作為推進微小水下載具之用,進口流道與出口流道相互垂直,改變流體流動的方向。所探討的流道將分為平壁式(flat)與角錐式(pyramidal)兩種。
本研究選用層加工中的SDM (Shape Deposition Manufacturing)製程,以製作一般微機電製程所無法達到之微幫浦3D擴散器/噴嘴微流道與腔體。SDM以高分子為主要材料,蠟為支撐材料,透過CAD/CAM軟體,對3D模型做適合的切層與加工規劃,各層堆積後以CNC加工機切削定義出該層之幾何。本研究首先嘗試改變平壁式流道的腔室厚度(500μm、1000μm、3000μm)與進口流道位置(腔室底部、腔室中部),進口流道最小尺寸為80μm x 80μm,進口流道數為三,製作並測試以得較佳之設計,再整合於角錐式流道的微幫浦設計,另分為三進口與四進口。完成腔體與流道之製作後,最後進行微幫浦的組裝測試,測試其背壓與流量,並加以比較。
本研究成功地製作3D平壁式與角錐式微幫浦且其進口與出口流道相互垂直,其中四進口角錐式流道之微幫浦,為本研究中效能最佳之設計,其在電壓50V、頻率175Hz時,最大流量為22.23μl/min。


Most of the researches of valveless micropump use MEMS processes to fabricate the chamber and the micro-channels. Due to the process limitation, the inlet and outlet channels of the micropump are usually parallel to each other, which are 2.5D features. In this research, a 3D piezoelectric-triggered valveless micropump was developed for propelling a meso-scale underwater vehicle. The inlet channels were perpendicular to the outlet channel, which was able to change the flow direction. Two types of channels, flat and pyramidal, were investigated in this study.
In this research, SDM (Shape Deposition Manufacturing) process, one of the layered manufacturing techniques, was chosen to manufacture the 3D diffuser/nozzle channels and chamber of the micropump, which is hard to be achieved by MEMS processes. SDM used polymer as part material and wax as support material. Suitable layer slicing and process planning were done with the aid of CAD/CAM software. In each layer, 3-axis CNC machine was utilized to define the geometry after material deposition. The study adjusted the chamber thickness (500μm、1000μm、3000μm) and the position of the inlets (bottom and middle) in flat-channel designs in order to find a better configuration to integrate to pyramidal-channel designs. The minimum channel size was 80μm x 80μm and the number of inlet channels was three. In pyramidal-channel micropumps, three and four inlets were fabricated. The piezoelectric buzzer was attached to the fabricated chamber and channels to test the performance. The flow rate and the back pressure were measured and compared among different designs.
This research has successfully manufactured 3D flat- and pyramidal-channel micropumps with inlets perpendicular to the outlet. Among various designs, the 4-inlet pyramidal-channel micropump had the best performance with the maximum flow rate of 22.23μl/min triggered at 50V and 175Hz.

摘要..........................................................................................................I Abstract....................................................................................................Ⅱ 致謝..........................................................................................................Ⅲ 目錄.........................................................................................................Ⅳ 圖目錄..................................................................................................... 表目錄..................................................................................................... 符號表..................................................................................................... 第一章緒論.............................................................................................1 1.1 前言............................................................................................1 1.2 研究動機與目的........................................................................2 1.3 論文架構....................................................................................4 1.4 文獻探討……………………………………………………….5 1.4.1發展背景...........................................................................5 1.4.2微幫浦之類型介紹與比較................................................7 1.4.2.1微閥門類型...........................................................7 1.4.2.2微致動器簡介.......................................................9 1.4.2.3微幫浦的分類.....................................................12 第二章微幫浦相關理論.........................................................................18 2.1無閥式微幫浦工作原理.............................................................18 2.2無閥式微幫浦原理分析.............................................................19 2.3微擴散器/噴嘴理論與設計........................................................23 2.4基本壓電材料理論.....................................................................29 2.5壓電致動器的選用.....................................................................32 第三章無閥式微幫浦結構設計.............................................................35 3.1微幫浦腔體結構設計.................................................................35 3.2製程選擇.....................................................................................45 3.3 SDM製程...................................................................................46 3.2.2 SDM製程簡介................................................................47 3.2.3 SDM建構材料................................................................49 3.4設計與製作軟體........................................................................53 第四章無閥式微幫浦腔體製作............................................................56 4.1實驗設備………………………………………………………56 4.1.1 SDM製程設備………………………………………….56 4.1.2 微幫浦驅動設備………………………………………..58 4.2 微幫浦腔體製作.......................................................................59 4.2.1 微幫浦腔體底部..............................................................61 4.2.2 微幫浦腔體中部..............................................................66 4.2.3 微幫浦腔體頂部..............................................................71 4.2.4 腔體加工流程整理..........................................................75 4.3 移除支撐材料...........................................................................79 4.4 實體檢驗...................................................................................80 第五章無閥式微幫浦之測試................................................................83 5.1 微幫浦之封裝...........................................................................83 5.1.1 壓電蜂鳴片的黏合..........................................................83 5.1.2 水管的黏合......................................................................84 5.2 背壓與流量的量測...................................................................85 5.2.1 背壓與流量量測方法......................................................85 5.2.2 背壓與流量量測結果......................................................89 5.3 結論.........................................................................................101 第六章結論與未來展望.......................................................................102 6.1 結論.........................................................................................102 6.2 未來改進方向.........................................................................103 參考文獻………………………………………………………………. 作者簡介……………………………………………………………….

【1】林建宏,無閥式微幫浦於水下載具應用之研發,國立台灣科技大學,碩士學位論文,2005

【2】H.T.C.Van Lintel,"Piezoelectric Micropump with Three Valves Working Peristaltically,"Sensors and Actuator A Vol.21,pp.203-206,1988

【3】A.Olsson,G.Strmme and E.Stemme,"A Valve-less Diffuser/Nozzle Based Fluid Pump,"Sensor and Actuators,Vol.39,pp.159-167,1993

【4】T.Gerlach,H.Wurmus,"working principle and performance of the dynamic micropump,"Sensors and Actuator A,vol.50,pp.135-140,1995

【5】A.Olsson,G.Strmme and E.Stemme,"A Valve-less Planar Fluid Pump Chambers with two pump,"Sensor and Actuators,Vol.46,pp.549-556,1995

【6】A.Olsson,G.Strmme and E.Stemme,"Diffuser-element Design Investigation for Valve-less Pumps,"Sensor and Actuators,Vol.57,pp.137-143,1996

【7】A.Olsson,G.Strmme and E.Stemme,"Micromachined Flat-walled Valveless diffuser Pumps,"Joural of microelectrmechanical System,Vol.6,No.2.pp.161-166,1997

【8】R.linnemann,p.woias,J.A.Ditterich,"A Self-Priming and Bubble-Tolerant Piezoelectriic Silicon Micropump for Liquids and Gases,"IEEE,pp.532-537,1998

【9】A.Ullman,"The piezoelectric valve-less pump-performance enhancement analysis",Sensor and Actuators,Vol.69,pp.97-105,1998

【10】A.Olsson,G.Strmme and E.Stemme,"A numerical design study of the valveless diffuser pump using a lumped-mass model,"Journal of Micromechanics and Microenggineering,vol.9,pp.34-44,1999

【11】A.Olsson,G.Strmme and E.Stemme,"Numerical and experimeental studies of flat-walled diffuser elements elements for valve-less micropumps,"Sensor and Actuators A,Vol.84,pp.165-175,2000

【12】M.Koch,N.Harris,"A Noval Micromachined pump Based on Thick-film Piezoelectric Actuation,"Sensor and Actuators,Vol.70,pp.98-103,1998

【13】H.Andersson,W.Wijngaart,P.Nilsson,P.Nilsson,P.Enoksson,G.Stemme,A valve-less diffuser micropump for microfluidic analytical system,"Sensor and Actuators B,Vol.72,pp.259-265,2001

【14】D.Xu,L.Wang,"Characteristics and Fabrication of NiTi/Si Diaphragm Micropump,"Sensor and Actuators A,Vol.93,pp.87-92,2001

【15】J.Jang,S.S.Lee,"Theoretical and Experimental Study of MHD (magnetohydrodynamic) Micropump,"Sensor and Actuators A,Vol.80,pp.84-89,2000

【16】S.Li,S.Chen,"Analytical analysis of a circular PZT actuator for valveless micropumps,"Sensor and Actuators A,Vol.104,pp.151-161,2003

【17】R.Zengerle,J.Ulrich,"A Bi-directional Silicon Micropump,"Sensor and Actuators A,Vol.50,pp.81-86,1995

【18】C.Jeong,S.S.Yang,"Fabrication and Test of A Thermopneumatic Micropump ,"Sensor and Actuators A,Vol.83,pp.249-255,2000

【19】A.Olsson,"Valve-less Diffuser Micropumps,"Instrumentation Laboratory Department of Signals,Sensors and Systems Royal Institute of Technology,1998

【20】A.Olsson,G.Strmme and E.Stemme,"A Valve-less planar fluid pump with two pump chambers"Sensor and Actuators A,Vol.46-47,pp.549-556,1995

【21】T.Gerlach,Microdiffusers as Dynamic Passive Valves for Micropump Applications,"Sensor and Actuators A,Vol.69,pp.181-191,1998

【23】F.M.White,"Fluid Mechanics,"McGraw-Hill,1994

【24】吳朗,"電子陶瓷,"全欣出版社,台北市,1994

【25】秋碧秀,"電子陶瓷材料",徐氏基金會,1994

【26】V.Singhal,V.Gerimella,Y.Murthy,”Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps,” Sensor and Actuators A,Vol.113,pp.226-235,2004

【27】M.Madou,Fundamentals of Microfabrication,CRC,1997

【28】A.Olsson,oksson,G.Stemme and E.Stemme,"An Improved Valve-less pump Fabrication Using Deep Reactive Ion Etching," IEEE,pp.479-484,1996

【29】S.Matsumoto,A.Klein,and Maeda,"Development of Bi-Direction Valve-less Micropump for Liquid,"IEEE,pp.141-146,1999

【30】陳嘉舜,微細圓盤電極於微矽槽放電加工之研究與應用,國立雲林科技大學機械工程研究所,2001

【31】R.Merz,Prinz,F.B.,K.Ramaswami,M.TerK,L.E.,Weiss,"Shape Deposition Manufacturing,"Solid Freeform Dabrication Symposium,August 8-10,1994

【32】J.Kietzman,"Rapid Prototyping Polymer Parts Via Shape Deposition Manufacturing",PhD Thesis,Stanford University,February ,1999

【33】G..Alexander,"Fabrication of Ceramic Components Using Mold Shape Deposition Manufacturing"PhD Thesis ,Stanford University,Auguest,1999

【34】Petroferm,"BIOACT280 Technical Data Sheet,"Petroferm Inc,2001

【35】徐永源,丁嘉緯,吳益通,UniGraphics NX3 電腦輔助製造,知城,台北市,1999

【36】I.Krassik,W.C.Krutzsch,W.H.Fraser, J.P.Messina,“Pump Handbook,” McGraw-Hill, New York. ,1976

無法下載圖示 全文公開日期 2008/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE