簡易檢索 / 詳目顯示

研究生: 張簡佳昌
CHIA-CHANG CHANG CHIEN
論文名稱: 摻雜過渡元素對於MnNiSi鐵磁性形狀記憶合金之麻田散體相變化行為之研究
Study on the martensitic transition behavior of MnNiSi ferromagnetic shape memory alloy
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 朱英豪
Ying-Hao Chu
丘群
Chun Chiu
陳柏均
Chen,Po-Chun
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 73
中文關鍵詞: MnNiSi鐵磁性形狀記憶合金第四元素添加麻田散體相變化居禮溫度
外文關鍵詞: MnNiSi ferromagnetic shape memory alloy, adding the fourth element, martensitic transition, Curie temperature
相關次數: 點閱:216下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在此篇研究中,藉由改變MnNiSi鐵磁性形狀記憶合金之元素組成,可有效降低其麻田散體相變化溫度,並利用真空感應熔煉爐製備MnNiSi合金,藉由第四元素(Cr, Fe, Co, Ni, Cu)之添加,探討微結構、晶體結構、麻田散體相變化溫度及居禮溫度之影響,並利用場發射掃描式電子顯微鏡(SEM)、X光繞射儀(XRD)、示差掃描熱卡量計(DSC)及熱重量分析儀(TGA)分析。MnNiSi鐵磁性形狀記憶合金在950˚C發生麻田散體相變化,由正交(orthorhombic)結構之麻田散體轉變六方(hexagonal)結構之沃斯田體。Mn0.95NiSiM0.05,M=(Cr, Fe, Co, Ni, Cu)合金樣品中,以(Cr, Fe, Co, Ni, Cu)置換部分Mn,使元素有效固溶於MnNiSi合金之晶格位置,晶體結構仍維持正交結構;然而(Cr, Fe, Co, Ni, Cu)因原子半徑及與Ni及Si形成鍵結長度較Mn小,使正交結構之晶格產生扭曲,能量上升使結構傾向不穩定,進而降低麻田散體相變化溫度。其中Cu之添加,使正交結構之晶格扭曲程度最大,單位晶胞體積由0.146降至0.144 nm3,相變化溫度由950降至813˚C。居禮溫度由337 降至320.1˚C。因Cu造成之相變化溫度下降最大,故進一步提高Cu含量,以Mn1-xCuxNiSi, X= (0.05、0.1、0.2、0.3)合金樣品,隨Cu含量增加,Cu無法有效固溶在MnNiSi合金中,有偏析之狀況發生,形成Cu3Si相。由DSC分析得知,隨Cu含量提高,除了熔化之吸熱峰及相變化吸熱峰外,又額外增加不可逆相變化之吸熱峰,使合金系統複雜化,不利後續分析,故Mn0.95NiSiCu0.05合金為室溫下,為有潛力之磁致冷材料之一。


In this study, MnNiSi ferromagnetic shape memory alloy was prepared by vacuum induction melting furnace with adding the fourth element (Cr, Fe, Co, Ni, Cu), it was investigated the microstructure, crystal structure, martensitic transition and Curie temperature using SEM, XRD, DSC and TGA. The MnNiSi alloy undergoes a martensitic transition from the orthorhombic martensite to hexagonal austenite at 950˚C. In Mn0.95NiSiM0.05 alloys, the added elements were effectively dissolved in MnNiSi alloy still maintain the orthorhombic structure, the smaller radius of added the elements and the resulted shorter bond length were beneficial for the formation hexagonal structure. MnNiSi alloy was the most distortion the lattice of orthorhombic structure with adding Cu, and it was unit cell volume was decreased from 0.146 to 0.144 nm3, martensitic transition was decreased from 950 to 813˚C and Curie temperature was decreased from 337 to 320.1˚C. In the Mn1-xCuxNiSi, X = (0.05, 0.1, 0.2, 0.3) alloy sample, Cu could not be effectively dissolved in the MnNiSi alloy. while the Cu content increases, the more Cu segregation to forming Cu3Si phase. According to DSC analysis, with the increase of Cu content, in addition to the endothermic peak of melting and phase transition, the endothermic peak of irreversible phase transition was additionally added, which complicated the alloy system and was unfavorable for subsequent analysis. Therefore, Mn0.95NiSiCu0.05 alloy was one of the potential magnetic refrigeration materials at room temperature.

致謝 I 摘要 II Abstract III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 簡介 1 第二章 文獻回顧 4 2.1 形狀記憶合金 4 2.1.1 傳統形狀記憶效應 4 2.1.2 鐵磁性形狀記憶效應 6 2.1.3形狀記憶合金之發展 7 2.2 麻田散體相變化 10 2.3 磁熱效應 11 2.4 MnNiSi-based鐵磁性形狀記憶合金 13 2.4.1結構相變化溫度對MnNiSi-based鐵磁性形狀記憶合金影響 15 2.4.2添加等結構合金之效應 15 2.4.3添加第四元素之效應 17 2.5總結 18 第三章 實驗方法 19 3.1實驗流程 19 3.2 MnNiSi-based鐵磁性形狀記憶合金之實驗步驟 20 3.2.1 MnNiSi-based合金製備 20 3.2.2 MnNiSi-based合金微結構分析之樣品製備 22 3.2.3 MnNiSi-based合金物理性質分析之樣品製備 23 3.3 MnNiSi-based鐵磁性形狀記憶合金之分析 24 3.3.1 微結構分析-SEM 24 3.3.2 元素成分分析-EDS 25 3.3.3 晶體結構分析-XRD 26 3.3.4麻田散體相變化溫度量測-DSC 27 3.3.5居禮溫度量測-TGA 28 第四章 結果與討論 29 4.1 MnNiSi鐵磁性形狀記憶合金之分析 29 4.1.1 MnNiSi鐵磁性形狀記憶合金之微觀結構及成分分析 30 4.1.2 MnNiSi鐵磁性形狀記憶合金之晶體結構及物理特性分析 33 4.2 Mn0.95NiSiM0.05, M=(Cr, Fe, Co, Ni, Cu)合金之成份分析 36 4.3 Mn0.95NiSiM0.05, M=(Cr, Fe, Co, Ni, Cu)合金之晶體結構分析 41 4.3.1 Mn0.95NiSiM0.05, M=(Cr, Fe, Co, Ni, Cu)合金之XRD分析 41 4.3.2 Mn0.95NiSiM0.05, M=(Cr, Fe, Co, Ni, Cu)合金之晶格常數分析 43 4.3.3 Mn0.95NiSiM0.05, M=(Cr, Fe, Co, Ni, Cu)合金之單位晶胞體積分析 46 4.4 Mn0.95NiSiM0.05, M=(Cr, Fe, Co, Ni, Cu)合金之相變化分析 47 4.5 Mn0.95NiSiM0.05, M=(Cr, Fe, Co, Ni, Cu)合金之居禮溫度分析 48 4.6 Mn1-xNiSiCux,合金之微結構及成分分析 49 4.6.1 Mn1-xCuxNiSi,合金之微結構分析 49 4.6.2 Mn1-xCuxNiSi,合金之成分分析 51 4.7 Mn1-xCuxNiSi,合金之相變化分析 55 第五章 結論 58 參考文獻 59

[1] Sutou, Y., Imano, Y., Koeda, N., Omori, T., Kainuma, R., Ishida, K., & Oikawa, K. (2004). Magnetic and martensitic transformations of NiMnX (X= In, Sn, Sb) ferromagnetic shape memory alloys. Applied Physics Letters, 85(19), 4358-4360.
[2] Liu, J., Gottschall, T., Skokov, K. P., Moore, J. D., & Gutfleisch, O. (2012). Giant magnetocaloric effect driven by structural transitions. Nature materials, 11(7), 620-626.
[3] Li, Y., Wei, Z. Y., Liu, E. K., Liu, G. D., Luo, H. Z., Xi, X. K. & Wu, G. H. (2015). Coupled magnetic and structural transitions in Fe-doped MnNiSi compounds. IEEE Transactions on Magnetics, 51(11), 1-4.
[4] Chen, J. H., Chhetri, T. P., Saleheen, A. U., Young, D. P., Dubenko, I., Ali, N., & Stadler, S. (2019). Effects of heat treatments on magneto-structural phase transitions in MnNiSi-FeCoGe alloys. Intermetallics, 112, 106547.
[5] Zhang, C. L., Shi, H. F., Ye, E. J., Nie, Y. G., Han, Z. D., Qian, B.& Wang, D. H. (2015). Magnetostructural transition and magnetocaloric effect in MnNiSi-Fe2Ge system. Applied Physics Letters, 107(21), 212403.
[6] Kasimov, D., Liu, J., Gong, Y., Xu, G., Xu, F., & Lu, G. (2018). Realization of magnetostructural coupling in a high temperature region in Mn0. 85Co0. 3Ni0. 85Si1-xGax system. Journal of Alloys and Compounds, 733, 15-21.
[7] Liu, J., Gong, Y., Xu, G., Peng, G., Shah, I. A., Ul Hassan, N., & Xu, F. (2016). Realization of magnetostructural coupling by modifying structural transitions in MnNiSi-CoNiGe system with a wide Curie-temperature window. Scientific reports, 6, 23386.
[8] Li, Y., Wei, Z. Y., Liu, E. K., Liu, G. D., Wang, S. G., Wang, W. H., & Wu, G. H. (2015). Structural transitions, magnetic properties, and electronic structures of Co (Fe)-doped MnNiSi compounds. Journal of Applied Physics, 117(17), 17C117.
[9] Zhang, C. L., Wang, D. H., Han, Z. D., Qian, B., Shi, H. F., Zhu, C.& Wang, T. Z. (2013). The tunable magnetostructural transition in MnNiSi-FeNiGe system. Applied Physics Letters, 103(13), 132411.
[10] Zhao, J. Q., Zhang, C. L., Nie, Y. G., Shi, H. F., Ye, E. J., Han, Z. D., & Wang, D. H. (2017). Tunable magnetostructural phase transition and magnetocaloric effect in Mn1− xNi1− xCo2xSi1− xGex system. Journal of Alloys and Compounds, 698, 7-12.
[11] Chen, J., Zhang, H. G., Liu, E. K., Yue, M., Lu, Q. M., Wang, W. H., ... & Zhang, J. X. (2016). Wide temperature window of magnetostructural transition achieved in Mn0. 4Fe0. 6NiSi1− xGax by a two-step isostructural alloying process. AIP Advances, 6(5), 056220.
[12] Chen, J. H., Us Saleheen, A., Karna, S. K., Young, D. P., Dubenko, I., Ali, N., & Stadler, S. (2018). Tuning martensitic transitions in (MnNiSi) 0.65 (Fe2Ge) 0.35 through heat treatment and hydrostatic pressure. Journal of Applied Physics, 124(20), 203903.
[13] Al-Humairi, S. N. S. (2019). Cu-Based Shape Memory Alloys: Modified Structures and Their Related Properties. In Recent Advancements in the Metallurgical Engineering and Electrodeposition. IntechOpen.
[14] Aksoy, S. (2010). Magnetic interactions in martensitic Ni-Mn based Heusler systems. Doktors der Naturwissenschaften, Fakultät für Physik der Universität Duisburg-Essen.
[15] 袁勃, 曾磊, 钱明芳, 张学习, & 耿林. (2018). 形状记忆合金弹热效应研究进展. 材料导报, 32(17), 3033-3040.
[16] Sozinov, A., Likhachev, A. A., Lanska, N., & Ullakko, K. (2002). Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Applied Physics Letters, 80(10), 1746-1748.
[17] Stadler, S., Khan, M., Mitchell, J., Ali, N., Gomes, A. M., Dubenko, I., ... & Guimarães, A. P. (2006). Magnetocaloric properties of Ni 2 Mn 1− x Cu x Ga. Applied Physics Letters, 88(19), 192511..
[18] Mañosa, L., González-Alonso, D., Planes, A., Bonnot, E., Barrio, M., Tamarit, J. L., ... & Acet, M. (2010). Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nature materials, 9(6), 478-481.
[19] Krenke, T., Duman, E., Acet, M., Wassermann, E. F., Moya, X., Mañosa, L., & Planes, A. (2005). Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nature materials, 4(6), 450-454..
[20] Pecharsky, V. K., Gschneidner Jr, K. A., Pecharsky, A. O., & Tishin, A. M. (2001). Thermodynamics of the magnetocaloric effect. Physical review B, 64(14), 144406.
[21] Ehlenbröker, U., Petersmann, M., Antretter, T., & Mahnken, R. (2017). Transformation strains for bainitic variant evolution in steel. PAMM, 17(1), 587-588.
[22] Dong, G. F., Gao, L., Tan, C. L., & Cai, W. (2012). Microstructure, martensitic transformation and properties in the Ni50Mn30Ga16Cu4 ferromagnetic shape memory alloy. Materials Science and Engineering: A, 558, 338-342.
[23] Tan, C. L., Dong, G. F., Gao, L., Sui, J. H., Gao, Z. Y., & Cai, W. (2012). Microstructure, martensitic transformation and mechanical properties of Ni50Mn30Ga20− xCux ferromagnetic shape memory alloys. Journal of alloys and compounds, 538, 1-4.
[24] Pecharsky, V. K., & Gschneidner Jr, K. A. (1997). Giant magnetocaloric effect in Gd 5 (Si 2 Ge 2). Physical review letters, 78(23), 4494.
[25] 吴光恒. (2012). 发现 MM′ X 合金居里温度窗口的启示. 物理, 41(08), 549-553.
[26] Liu, E. K., Zhu, W., Feng, L., Chen, J. L., Wang, W. H., Wu, G. H., ... & Li, Y. X. (2010). Vacancy-tuned paramagnetic/ferromagnetic martensitic transformation in Mn-poor Mn1-xCoGe alloys. EPL (Europhysics Letters), 91(1), 17003.
[27] Wang, J. T., Wang, D. S., Chen, C., Nashima, O., Kanomata, T., Mizuseki, H., & Kawazoe, Y. (2006). Vacancy induced structural and magnetic transition in Mn Co 1− x Ge. Applied physics letters, 89(26), 262504.
[28] Zhang, H., Li, Y., Liu, E., Tao, K., Wu, M., Wang, Y., ... & Long, K. (2017). Multiple magnetic transitions in MnCo1− xCuxGe driven by changes in atom separation and exchange interaction. Materials & Design, 114, 531-536.
[29] Ma, S. C., Hou, D., Shih, C. W., Wang, J. F., Lee, Y. I., Chang, W. C., & Zhong, Z. C. (2014). Magnetostructural transformation and magnetocaloric effect in melt-spun and annealed Mn1− xCuxCoGe ribbons. Journal of alloys and compounds, 610, 15-19.
[30] Trung, N. T., Biharie, V., Zhang, L., Caron, L., Buschow, K. H. J., & Brück, E. (2010). From single-to double-first-order magnetic phase transition in magnetocaloric Mn 1− x Cr x CoGe compounds. Applied Physics Letters, 96(16), 162507.
[31] Samanta, T., Dubenko, I., Quetz, A., Stadler, S., & Ali, N. (2012). Giant magnetocaloric effects near room temperature in Mn1− xCuxCoGe. Applied Physics Letters, 101(24), 242405.
[32] Liu, E., Wang, W., Feng, L., Zhu, W., Li, G., Chen, J., ... & De Boer, F. (2012). Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets. Nature communications, 3(1), 1-10.
[33] Li, Y., Wei, Z. Y., Liu, E. K., Liu, G. D., Wang, S. G., Wang, W. H., & Wu, G. H. (2015). Structural transitions, magnetic properties, and electronic structures of Co (Fe)-doped MnNiSi compounds. Journal of Applied Physics, 117(17), 17C117.
[34] Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W., Scott, J. H. J., & Joy, D. C. (2017). Scanning electron microscopy and X-ray microanalysis. Springer.
[35] 林麗娟. (1994). X 光繞射原理及其應用. X 光材料分析技術與應用專題.," 1994.
[36] Landrum, G. A., Hoffmann, R., Evers, J., & Boysen, H. (1998). The TiNiSi family of compounds: Structure and bonding. Inorganic Chemistry, 37(22), 5754-5763.
[37] Tao, K., Zhang, H., Long, K. W., Wang, Y. X., Wu, M. L., Xiao, Y. N., ... & Long, Y. (2017). Magnetostructural transformation and large magnetocaloric effect in Mn0. 9Cu0. 1CoGe1− xSix alloys. Intermetallics, 91, 45-49.
[38] Li, Y., Zhang, H., Tao, K., Wang, Y., Wu, M., & Long, Y. (2017). Giant magnetocaloric effect induced by reemergence of magnetostructural coupling in Si-doped Mn0. 95CoGe compounds. Materials & Design, 114, 410-415.

QR CODE