簡易檢索 / 詳目顯示

研究生: 林建良
Jian-Liang Lin
論文名稱: 不飽和凝聚性路基土壤回彈模數之研究
Resilient Modulus of Unsaturated Cohesive Subgrade Soils
指導教授: 林宏達
Horn-Da Lin
口試委員: 褚炳麟
none
黃偉慶
none
陳堯中
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 102
中文關鍵詞: 不飽和土壤基質吸力回彈模數軸平移技術
外文關鍵詞: unsaturated soil, matric suction, resilient modulus, axis-translation technique
相關次數: 點閱:317下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

路基土壤多位於地下水位面以上,呈現不飽和狀態,功能為承載道路面層所傳遞而下的荷重。當路基土壤受到季節性降雨及道路排水系統不良等影響時,會衍生出路基土壤的含水量增加,並同時牽動著土壤內部基質吸力下降的情形。而回彈模數會因降雨引致含水量的增加而折減。本研究為了解基質吸力與回彈模數之關係,以軸平移技術控制土壤基質吸力在道路開通服務後的含水量狀態,並利用MTS動力三軸試驗系統,進行一系列路基土壤回彈模數試驗,探討不飽和路基土壤基質吸力與回彈模數特性。試驗結果顯示影響路基土壤基質吸力的因素,除了季節性降雨造成含水量增加的影響外,反覆荷載造成土壤孔隙水壓上升基質吸力下降亦是主要原因。並由試驗結果得知當基質吸力較接近平衡含水量狀態時,回彈模數會隨基質吸力增加而增加。


Subgrade often lies above the groundwater level and appear in unsaturated conditions. Its function is to bear the weight transfered down from the pavement. The subgrade can be affected by the seasonal rainfall or the detrimental road drainage system. As a result, water content of the subgrade may increase and the matric suction of the soils may decrease at the same time .The resilient modulus will be reduced because the increase of the water content. The axis-translation technique is used to control the soil suction and the water content state after road serving in order to investigate the relation between suction and the resilient modulus. This research used the MTS cyclic triaxial test system to carry out the resilient modulus tests on subgrade soils.
The test results show that the main factor influencing the matric suction of subgrade, except the water content increase induced by the seasonal rainfall, is the deviator stress. The deviator stress loaded repeatedly may result in pore water pressure rises and then matric suction decreases. Test results also show that when the matric suction is relatively close to Equilibrium Moisture Content (EMC), the resilient modulus will increase with the increased matric suction.

第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容 2 1.3研究架構與流程 3 第二章 文獻回顧 5 2.1不飽和土壤的組構 5 2.1.1土壤總吸力(Total Suction). 6 2.1.2 基質吸力(Matric Suction) 8 2.2不飽和土壤的應力狀態 11 2.3回彈模數的沿革 13 2.4回彈模數的定義 14 2.5回彈模數的影響因素 14 2.5.1試體性質種類 15 2.5.2試體製作方式 15 2.5.3含水量(飽和度) 15 2.5.4應力脈波波型 16 2.5.5應力脈波頻率 16 2.5.6反覆軸差應力 17 2.5.7圍壓 17 2.5.8應力加載次數 18 2.6 基質吸力對路基土壤回彈模數的影響 18 第三章 試驗材料與研究方法 29 3.1試體準備 29 3.1.1試驗材料 29 3.1.2試體的製作方式 29 3.2 現地路基土壤含水量狀態 30 3.2.1初始荷重狀態 32 3.2.2含水量狀態的模擬 33 3.3不飽和土壤三軸試驗 34 3.3.1高進氣吸力值陶瓷板 35 3.3.2軸平移技術 36 3.3.3吸力平衡 37 3.4回彈模數試驗 39 3.4.1回彈模數試驗設備 39 3.4.1.1 MTS 材料試驗系統 39 3.4.1.2量測記錄儀器 41 3.5回彈模數試驗程序 43 3.6試驗儀器校正 46 3.7整體試驗步驟 46 第四章 試驗結果與分析 74 4.1基質吸力控制 74 4.1.1含水量狀態模擬結果 74 4.1.2吸力平衡結果 75 4.2回彈模數試驗分析 76 4.2.1反覆載重下孔隙水壓變化 77 4.2.2反覆載重下基質吸力變化 77 4.2.3反覆載重下之回彈模數 78 4.2.4回彈模數與基質吸力關係 79 4.2.4反覆載重下之塑性應變 80 第五章 結論與建議 93 5.1 結論 93 5.2 建議 94 參考文獻 96 附錄一 補償荷重之計算公式 101

1. 蘇百加,『夯實紅土材料回彈模數之研究』,國立台灣科技大學營建工程研究所,1988。
2. 拱祥生,『降雨對不飽和土壤邊坡之穩定性研究』碩士論文,國立台灣科技大學營建工程研究所,1999。
3. 楊樹榮,『路基土壤反覆載重下之回彈與塑性行為及模式建構』,碩士論文,國立中央大學營建工程研究所,2002。
4. 林宏達、拱祥生,『不飽和土壤力學性質試驗及其在邊坡工程之運用』,地工技術第83期,2001。
5. 黃偉慶,「柔性路面厚度設計法評估」,鋪面管理維護系統研討會專輯(二),中壢市,第118-134 頁,(1991)。
6. 戴裕聰,『土壤吸力對路基土壤之力學特性影響探討』,國立中央大學營建工程研究所,2004。
7. 王祥銘,『路基土壤受反覆載重作用之累積永久變形研究』,國立中央大學營建工程研究所,2001。
8. 陳進、林志棟,『路基紅土回彈模數(Mr)特性之研究』,第六屆路面工程學術研討會論文集,第17~40頁,1992。
9. 劉明樓,『柔性路面車轍與疲勞龜裂之預測』,中國土木水利工程學刊,第九卷,第三期,第417~426頁,1997。
10. 黃偉慶、盧俊鼎,『路基回彈模數試驗方法的演進與設備校正』,第九屆鋪面鋪面工程研討會,第487~495頁,1997。
11. 黃偉慶、盧俊鼎,『路基回彈模數試驗系統校正及預處理效應評估』,第十屆鋪面鋪面工程研討會論文集,第37~46頁,1999。
12. 黃偉慶、盧俊鼎,『路基土壤回彈模數三軸試驗系統量測物確定度評估』,中國土木水利工程學刊,第十三卷,第三期,第605~617頁,2001。
13. 沈茂松,『實用土壤力學試驗』,1988。
14. AASHTO,(1992). Designation: T292-91; Standard Method of Test
for Resilient Modulus of Subgrade Soils and Untreated Base/Subbase Materials, American Association of State Highway and Transportation Officials.
15. Asphalt Institute. Thickness Design–Asphalt Pavement for Highways and Streets, Ninth, The Asphalt Institute, Manual Series NO.1(MS-1).
16. Andrew C. Heath; Juan M. Pestana, M.ASCE; John T. Harvey, M.ASCE;and Manuel O. Bejerano, A.M.ASCE (2004). "Normalizing Behavior of Unsaturated Granular Pavement Materials.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE,896-904.
17. Alavi, S., Merport, T. , Wilson, J. , Groeger, J. , and Lopez, A. LTPP materials characterization program: resilient modulus of unbound materials (LTPP Protocol P46) laboratorystartup and quality control procedure. Report No. FHWA-RD-96-176, U.S. Department of Transportation, Federal Highway Administration, McLean, Virginia, 1997.
18. Bear, J., Hydraulics of Groundwater, McGraw-hill, USA(1979).
19. Elliott, R.P., and, Thornton, S.I. (1986). “Resilient modulus-what does it mean?” Proceedings 37th Highway Geology Symposium, Helena, Montana, pp. 283-301.
20. Fredlund, D. G.,and Rahardjo, H., “Soil Mechanics for Unsaturated Soils,” 1997.
21. Fredlund, D.G., and Berbergan, A.T. (1977). “Relation between resilient modulus and stress conditions for cohesive subgrade soils,” Transportation Research Record, 642, 73-81.
22. Hillel, D., Fundamentals of Soil Physics, Academic Press, New York (1980).
23. Kawakami, F., and Ogawa, S., ”Strength and Deformation of Compaction Soil Subjected to Repeated Stress Applications, ” Preceeding of the 6th International Conf. on Mech. Found. Eng. 1965, Canada, pp.264~268.
24. Laurano R.Hoyos Jr. and EMIR Jose Macari(2001) “Development of
a Stress/Suction-Controlled True Triaxial Testing Device for
Unsaturated Soils,” American Society for Testing and Materials.
25. Lambe, T. W., “The Engineering Behavior of Compacted Clay,” Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 84, SM2, Paper no.1655, pp.1-35(1958).
26. Naji, Khoury N., Zaman, M. M., Nevels, J. B., and Mann , J. (2003). “Effect of soil suction of resilient modulus of subgrade soil using the filter paper technique.” TRB Annual Meeting CD-ROM, paper no. 00-1457.
27. Naji, Khoury. N., and Zaman, M. M.(2004).“Correlation Among Resilient Modulus, Moisture Variation, and Soil Suction for Subgrade Soils .” TRB Annual Meeting CD-ROM, paper no. 00-1457.
28. Phillip, S.K. Ooi, A. Ricardo Archilla., and Kealohi G. Sandefur(2004) “Resilient Modulus Models for Compacted Cohesive Soils.” TRB Annual Meeting CD-ROM, paper no. 00-1457.
29. Quintus, H.V., and Killingsworth, B. (1998). “Analyses relating to pavement material characterization and their effects on pavementperformance.”FHWA, Publication No. FHWA-RD-97-085.
30. Raymond,G.P.,Gaskin,P.N., and Addo-Abedi, F.Y. (1979).“Repeated compressive loading of Leda clay.” Canadian Geotechnical Journal, 14(1), 1-10.
31. Seed, H.B., and Chan, C.K. (1959). “Undrained strength of compacted clays after soaking,” Journal of Soil Mechanics and Foundation Engineering, ASCE, 85(5), 87-128.
32. Seed, H.B., and Chan, C.K., ” Clay Strength Under Earthquake Loading Conditions, ” Journal of the soil Mechanics and Foundations Division, ASCE, Vol. 92, No.SM2, Marth, 1966. pp.53~78.
33. Tate, B. D., and Larew, H.G., ” Effect of Structure on Resilient Rebound Characteristic of Soils in the Piedomont Province of Virginia, ” Highway Research Record No. 39, Highway Research Board, 1963, pp.15~31.
34. Thompson, M. R., and Robnett, Q. R., ” Resilient Properties of Subgrade Soils, ”Journal of the Transportation Engineering, ASCE, Vol. 105, No. TE1, January, 1979, pp.71~89.
35. Tadkamalla, G. B., and George, K. P. (1995). “Characterization of subgradesoils at simulated field moisture.” Transportation Research Record 1481, pp. 21-27.
36. Thornton, S.I., and Elliott, R.P. (1986). “Resilient modulus-what is
it?” Proceedings 37th Highway Geology Symposium, Helena Montana, 267-282.
37. Uzan, J. (1985). “Characterization of granular material.” Transportation Research Record,1022, 52-59.
38. Uzan, J. (1992). “Resilient characterization of pavement materials.” International Journal for Numerical and Analytical Methods in Geomechanics,16, 453-459.
39. Uzan, J. (1998). “Characterization of clayey subgrade materials for
mechanistic design of flexible pavements.” Transportation Research
Record 1629, pp.189-196.

QR CODE