簡易檢索 / 詳目顯示

研究生: 陳瑩燦
Ying-tsan Chen
論文名稱: 具不斷電控制之永磁式同步電動機驅動系統之研製
Development of Permanent-Magnet Synchronous Motor Drives with Uninterruptible Power Supply
指導教授: 黃仲欽
Jonq-chin Hwang
口試委員: 吳瑞南
Ruay-nan Wu
王順源
Shun-yuan Wang
葉勝年
Sheng-nian Yeh
陳慕平
Mu-ping Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 84
中文關鍵詞: 不斷電系統永磁式同步電動機驅動系統單位功因功率平衡控制
外文關鍵詞: power balance control, uninterruptible power supply, permanent-magnet synchronous motor drives, unity power factor
相關次數: 點閱:235下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文旨在研製具不斷電控制之永磁式同步電動機驅動系統,作為市電側電源中斷時之用電設備緊急驅動使用。系統之單相交流-直流功率轉換器採用全橋全控型架構,以弦式脈寬調變單極性電壓切換技術,並利用負載功率估測作功率平衡控制,將交流電源轉換為穩定的直流電源,提供電動機驅動使用。如此,市電側具有電流諧波失真率低及功率因數高之優點,且直流鏈電壓不受負載及市電側電壓變動而維持固定值。永磁式同步電動機之轉矩控制方面,採用磁場導向控制為控制依據,其轉速及電流控制迴路採用比例-積分控制器作為轉速及電流調節器。另外,永磁式同步電動機之轉子位置及速度回授則使用電磁旋轉編碼器(MR encoder)作位置及速度回授之感測,其價格便宜、安裝容易且體積小,具有商品化的價值。在市電側電源中斷期間,直流-直流功率轉換器作蓄電池組之放電控制,本文之直流-直流功率轉換器放電控制採用定電壓放電法,並配合功率平衡控制,使直流鏈電壓維持供電狀態,以提供永磁式同步電動機驅動之功率。本文系統之直流-直流功率轉換器,由全橋式直流-交流功率轉換器、高頻變壓器及半橋式二極體整流電路所組成。直流-直流功率轉換器之高頻變壓器不僅可提高電能轉換之電壓比,且具有電路隔離之作用,適合應用於本文系統之設計。
本文系統以數位信號處理器(TMS320LF2407A)作為整體系統之控制核心,其控制策略皆由軟體完成,以減少硬體電路。市電正常供應下,市電側提供單相交流110 V電源,單相交流-直流功率轉換器利用電流預測法控制直流鏈電壓為200 V,永磁式同步電動機額定轉速800 rpm,負載轉矩為6 N-m,其市電側之電流諧波失真率為6.08 %,市電側功率因數為0.99。當市電斷電時,藉由高頻切換之直流-直流功率轉換器,將蓄電池組24 V之端電壓,提昇直流鏈電壓至150 V,供同步電動機驅動使用,以達到不斷電控制之目的。本文已完成500 W不斷電控制之電動機驅動系統雛型,並由實測結果驗證本文系統之可行性。


This thesis focuses on the design and implementation of permanent-magnet synchronous motor drives with uninterruptible power supply. A full-bridge, full-controlled AC-DC power converter is designed to drive the system by basing on load power estimation and unipolar voltage switching with sinusoidal pulse-width modulation. The advantages are low current harmonic distortion and high power factor on the grid side. Besides, the dc-link voltage remains fixed when voltage of load or grid varies. Field-orientation is adopted for torque control, while proportional-integral controllers are used for speed and current regulations. In addition, the cheap and small magnetic rotary encoder is introduced for position and speed feedbacks. A DC-DC power converter is used to discharge battery set during the grid power outage by means of the fixed-voltage discharging method and power balance control to maintain constant dc-link voltage for supplying power to permanent-magnet synchronous motor. The DC-DC power converter in this thesis is composed of full-bridge DC-AC power converter, high-frequency transformer, and half-bridge diode rectifier circuit. The high-frequency transformer of DC-DC power converter can not only raise the voltage ratio of energy transferred, but also provide the function of isolation. Thus it is suitable for the proposed system.
A digital signal processor (TMS320LF2407A) is used for the core control of the system to reduce hardware components. Under normal utility power of single-phase, 110 V, and with the dc-link voltage of 200 V, the motor rated speed of 800 rpm, and the load torque of 6 N-m, the current harmonic distortion and power factor of the grid side are 6.08 %, and 0.99, respectively. On the other hand, when utility power fails, the energy stored in batteries is released to dc-link to drive synchronous motor through DC-DC power converter which switches at high frequency to achieve the function of uninterruptible power supply. A 500 W prototype of permanent-magnet synchronous motor drive with power uninterruption is developed. Experimental evaluations are given to verify the proposed system performance.

中文摘要 ………………………………………………………. I 英文摘要 ………………………………………………………. II 誌 謝 ………………………………………………………. III 目 錄 ………………………………………………………. IV 圖表索引 ………………………………………………………. VII 符號索引 ………………………………………………………. XII 第一章 緒論…………………………………………………. 1 1.1 前言…………………………………………………. 1 1.2 系統架構……………………………………………. 2 1.3 本文大綱……………………………………………. 3 第二章 單相交流-直流功率轉換器之分析與控制………… 5 2.1 前言…………………………………………………. 5 2.2 單相交流-直流功率轉換器之分類與比較………… 5 2.2.1 單相全橋二極體整流器……………………………. 5 2.2.2 單相之單開關昇壓型交流-直流功率轉換器之分析 6 2.2.3 單相全橋半控型交流-直流功率轉換器之分析…… 6 2.2.4 單相全橋全控型交流-直流功率轉換器之分析…… 7 2.3 單相全橋全控型交流-直流功率轉換器之數學模式 9 2.4 單相交流-直流功率轉換器之控制………………… 10 2.5 單相交流-直流功率轉換器之模擬與實測………… 14 2.6 結語…………………………………………………. 18 第三章 直流-直流功率轉換器之分析與控制……………… 19 3.1 前言…………………………………………………. 19 3.2 蓄電池與高頻變壓器………………………….…… 19 3.3 直流-直流功率轉換器放電模式之分析與控制…… 20 3.4 直流-直流功率轉換器之實測……………………… 26 3.5 結語…………………………………………………. 29 第四章 永磁式同步電動機之控制與系統整合……………. 30 4.1 前言…………………………………………………. 30 4.2 永磁式同步電動機之控制與實測…………………. 30 4.2.1 永磁式同步電動機之數學模式……………………. 32 4.2.2 永磁式同步電動機之控制…………………………. 35 4.2.3 永磁式同步電動機之實測…………………………. 37 4.3 系統整合……………………………………………. 42 4.3.1 單相交流-直流功率轉換器與電動機驅動之整合… 42 4.3.2 蓄電池放電模式與電動機驅動之整合……………. 44 4.4 結語…………………………………………………. 46 第五章 實體製作與實驗結果………………………………. 47 5.1 前言…………………………………………………. 47 5.2 實體製作……………………………………………. 47 5.2.1 數位信號處理器之介面規劃………………………. 47 5.2.2 電流偵測電路………………………………………. 49 5.2.3 電壓偵測電路………………………………………. 51 5.2.4 市電電壓零點偵測電路及峰值電壓偵測電路……. 52 5.2.5 脈寬調變信號致能與故障保護電路………………. 53 5.2.6 智慧型功率模組與閘極驅動電路…………………. 54 5.2.7 電磁旋轉編碼器介面電路…………………………. 56 5.3 軟體規劃……………………………………………. 57 5.3.1 主控制程式…………………………………………. 58 5.3.2 單相交流-直流功率轉換器控制程式……………… 59 5.3.3 蓄電池放電模式控制程式…………………………. 59 5.3.4 永磁式同步電動機轉速控制程式…………………. 61 5.4 實測結果……………………………………………. 63 5.5 結語…………………………………………………. 64 第六章 結論與建議…………………………………………. 74 6.1 結論…………………………………………………. 74 6.2 建議…………………………………………………. 75 參考文獻 ………………………………………………………. 76 附錄A 功率因數與電流總諧波失真率定義………………. 80 附錄B 高頻變壓器之設計……………….…….…………… 81 附錄C 永磁式同步電動機之額定及參數…………………. 82 附錄D 系統規格及控制參數………………………………. 83 作者簡介 ………………………………………………………. 84

[1]H. Van Der Broeck, H. C. Skudelny and G. V. Stanke, “Analysis and
Realization of a Pulsewidth Modulator Based on Voltage Space Vectors,”
IEEE Transactions on Industry Applications, Vol.24, No.1, pp.142-150, 1988.
[2]J. Holtz, “Pulse-width Modulation for Electronic Power Conversion,”
Proceedings of the IEEE, Vol.82, No.8, pp.1194-1214, 1994.
[3]N. Mohan, T. M. Undeland and W. P. Robbins, “Power Electronics,
Converters, Applications, and Design,” John Wiley & Sons, Inc., 2nd, 1995.
[4]T. G. Habetler, “A Space Vector-Based Rectifier Regulator for AC/DC/AC
Converters,” IEEE Transactions on Power Electronics, Vol.8, No.1, pp.30-
36, 1993.
[5]R. Wu, S. B. Dewan and G. R. Slemon, “A PWM AC-to-DC Converter with Fixed
Switching Frequency,” IEEE Transactions on Industry Applications, Vol.26,
No.5, pp.880-885, 1990.
[6]T. G. Habetler and D. M. Divan, “Angle Controlled Current Regulated
Rectifiers for AC/AC Converters,” IEEE Transactions on Power Electronics,
Vol.6, No.3, pp.463-469, 1991.
[7]L. Malesani, L. Rossetto, P. Tenti and P. Tomasin, “AC/DC/AC PWM Converter
with Reduced Energy Storage in the DC Link,” IEEE Transactions on Industry
Applications, Vol.31, No.2, pp.287-292, 1995.
[8]S. K. Sul and T. A. Lipo, “Design and Performance of a High Frequency Link
Induction Motor Drive Operating at Unity Power Factor,” IEEE IAS
Conference Record, pp.308-313, 1988.
[9]J. W. Choi and S. K. Sul, “Resonant Link Bidirectional Power Converter
without Electrolytic Capacitor,” IEEE PESC’93, pp.293-299, 1993.
[10]J. S. Kim and S. K. Sul, “New Control Scheme for AC-DC-AC Converter
without DC Link Electrolytic Capacitor,” IEEE PESC’93, pp.300-306, 1993.
[11]R. Uhrin and F. Profumo, “Performance Comparison of Output Power
Estimators Used in AC/DC/AC Converters,” IEEE IECON’94, Vol.1, pp.344-
348, 1994.
[12]廖峻慶,“高功因三相感應伺服驅動系統之瞬間功率平衡控制”,國立台灣科技大學
電機研究所博士論文,民國八十九年。
[13]蘇家瑋,“三相昇壓型整流器之永磁式同步電動機驅動器之研製”,國立台灣科技大
學電機研究所碩士論文,民國九十二年。
[14]GP-12260 Technical Manual, CSB Co., pp.1-2.
[15]B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P.
Kothari, “A Review of Single-Phase Improved Power Quality AC-DC
Converters,” IEEE Transactions on Industrial Electronics, Vol.50, No.5,
pp.962-981, 2003.
[16]R. Carbone, P. Corsonello and A. Scappatura, “A Three-Phase Diode
Rectifier with Low Current Harmonics,” IEEE International Conference,
Vol.2, pp.642-647, 2003.
[17]K. Ohtsuka, K. Matsui, I. Yamamoto and Y. Yao, “A Novel Three-Phase Diode
Rectifier with Sinusoidal Input Current,” IEEE ISIE’01, Vol.2, pp.910-
915, 2001.
[18]A. R. Prasad, P. D. Ziogas and S. Manias, “An Active Power Factor
Correction Technique for Three-Phase Diode Rectifiers,” IEEE Transactions
on Power Electronics, Vol.6, No.1, pp.83-92, 1991.
[19]D. O. Neacsu, Z. Yao and V. Rajagopalan, “Optimal PWM Control for Single- Switch Three-Phase AC-DC Boost Converter,” IEEE PESC’96, Vol.1, pp.727-
732, 1996.
[20]Y. Jang and M. M. Jovanovic, “A Comparative Study of Single-Switch Three-
Phase High-Power-Factor Rectifiers,” IEEE Transactions on Industry
Applications, Vol.34, No.6, pp.1327-1334, 1998.
[21]E. H. Ismail and R. Erickson, “Single-Switch PWM Low Harmonic
Rectifiers,” IEEE Transactions on Power Electronics, Vol.11, No.2, pp.
338-346, 1996.
[22]A. R. Prasad, P. D. Ziogas and S. Manias, “An Active Power Factor
Correction Technique for Three-Phase Diode Rectifiers,” IEEE Transactions
on Power Electronics, Vol.6, No.1, pp.83-92, 1991.
[23]J. W. Kolar, H. Ertl and F. C. Zach, “A Comprehensive Design Approach for
a Three-Phase High-Frequency Single-Switch Discontinuous-Mode Boost Power
Factor Corrector Based on Analytically Derived Normalized Converter
Component Ratings,” IEEE Transactions on Power Electronics, Vol.31, No.3,
pp.569-582, 1995.
[24]J. Kikuchi, M. D. Manjrekar and T.A. Lipo, “Performance Improvement of
Half Controlled Three Phase PWM Boost Rectifier,” IEEE PESC’99, Vol.1,
pp.319-324, 1999.
[25]C. T. Pan and Y. S. Huang, “A Truly Error Bounded Current Controller for
Three-Phase AC/DC Boost Converter,” IEEE IECON’02, Vol.1, pp.359-364,
2002.
[26]D. O. Neacsu, “Vectorial Current Control Techniques for Three-Phase AC/DC
boost converters,” IEEE ISIE’99, Vol.2, pp.527-532, 1999.
[27]J. W. Choi and S. K. Sul, “Fast Current Controller in Three-Phase AC/DC
Boost Converter Using d-q Axis Crosscoupling,” IEEE Transactions on Power
Electronics, Vol.13, No.1, pp.179-185, 1998.
[28]T. G. Habetler, “A Space Vector-Based Rectifier Regulator for AC/DC/AC
Converters,” IEEE Transactions on Power Electronics, Vol.8, No.1, pp.30-
36, 1993.
[29]葉書宏,“感應電動機驅動器電源側功率因數改善之研製”,國立台灣科技大學電機
研究所碩士論文,民國八十五年。
[30]曾宏舜,“高功因三相開關型整流器之研製”,國立台灣科技大學電機研究所碩士論
文,民國八十七年。
[31]F. Blaschke, “The Principle of Field Orientation as Applied to the New
Transvector Closed Loop Control System for Rotating Field Machines,”
Siemens Review, Vol.34, pp.217-220, 1972.
[32]K. H. Bayer, H. Waldmann and M. Weibelzahl, “Field-Oriented Closed-Loop
Control of a Synchronous Machine with New Transvector Control System,”
Siemens Review, Vol.39, No.5, pp.220-223, 1972.
[33]劉昌煥著,“交流電機控制”,東華書局,第二版,民國九十二年。
[34]許溢适編譯,“AC伺服系統的理論與設計實務”,文笙書局,民國八十一年。
[35]AS5040 Technical Manual, AustriaMicroSystems Co., 2004.
[36]S. Morimoto, M. Sanada and Y. Takeda, “Wide-Speed Operation of Interior
Permanent Magnet Synchronous Motors with High-Performance Current
Regulator,” IEEE Transactions on Industry Applications, Vol.30, No.4,
pp.920-926, 1994.
[37]S. Morimoto, K. Hatanaka, Y. Tong, Y. Takeda and T. Hirasa, “Servo Drive
System and Control Characteristics of Salient Pole Permanent Magnet
Synchronous Motors,” IEEE Transactions on Industry Applications, Vol.29,
No.2, pp.338-342, 1993.
[38]A. Consoli and A. Raciti, “Analysis of Permanent Magnet Synchronous
Motors,” IEEE Transactions on Industry Applications, Vol.27, No.2, pp.350-
354, 1991.
[39]何世賓,“凸極式永磁式同步電動機之高效率及高速控制系統研製”,國立台灣科技
大學電機研究所碩士論文,民國八十九年。
[40]Y. Ren, M. Xu, D. Sterk and F. C. Lee, “1 MHz Self-Driven ZVS Full-Bridge
Converter for 48V Power Pods,” IEEE PESC’03, Vol.4, pp.1801-1806, 2003.
[41]Y. Jang and M. M. Jovanovic, “A New Family of Full-Bridge ZVS
Converters,” IEEE Transactions on Power Electronics, Vol.19, No.3, pp.701-
708, 2004.
[42]F. Z. Peng, H. Li, G. J. Su and J. S. Lawler, “A New ZVS Bidirectional DC-
DC Converter for Fuel Cell and Battery Application,” IEEE Transactions on
Power Electronics, Vol.19, No.1, pp.54-65, 2004.
[43]C. Liu, A. Johnson and J. S. Lai, “A Novel Three-Phase High-Power Soft
Switched DC/DC Converter for Low Voltage Fuel Cell Applications,” IEEE
APEC’04, Vol.3, pp.1365-1371, 2004.
[44]K. Wang, C. Y. Lin, L. Zhu, D. Qu, F. C. Lee and J. S. Lai, “Bi-
directional DC to DC Converters for Fuel Cell Systems,” Power Electronics
in Transportation, pp.47-51, 1998.
[45]Materials Technical Manual, EPCOS Co., pp.82-83, 2000.
[46]蘇育生,“以數位訊號處理器為基礎之並聯型單相全橋不斷電系統之研製”,國立台
灣科技大學電機研究所碩士論文,民國九十三年。
[47]TMS320LF240xA DSP Controllers, Advance Information, Texas Instruments Co.,
2000.
[48]TMS320LF/LC240xA DSP Controllers Reference Guide, System and Peripherals,
Texas Instruments Co., 2001.
[49]PM20CSJ060 Technical Manual, Mitsubishi Electric Co., 2000.

QR CODE