Basic Search / Detailed Display

Author: 江福源
FU-YUAN CHIANG
Thesis Title: 以ISM法分析投標營造商資質審查準則間之關係
Using the ISM Method to Analyze the Relationships between Various Contractor Prequalification Criteria
Advisor: 喻奉天
Vincent F. Yu
Committee: 簡紹琦
丁秀儀
林詩偉
楊朝龍
蔡豐明
盧宗成
喻奉天
Degree: 博士
Doctor
Department: 管理學院 - 管理研究所
Graduate Institute of Management
Thesis Publication Year: 2023
Graduation Academic Year: 111
Language: 中文
Pages: 61
Keywords (in Chinese): 投標營造商資質審查合格營造商詮釋結構模式矩陣乘法分類法
Keywords (in other languages): Interpretative Structural Modeling, Matrices Impacts Croises-Multiplication Appliance Classement
Reference times: Clicks: 213Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 營造工程的業主為選擇一個合格且具履約能力的營造商,對投標營造商進行資質審查是在業界常用的方法。投標營造商資質審查機制是一個多面向多準則的審查流程,而在這流程中較具決定性的準則,應是營造工程的業主在選商時須著重考量的因素。因此,本研究應用詮釋結構模式(Interpretive Structural Modeling, ISM)及影響矩陣乘法分類法(Impact Matrix Cross-Reference Multiplication Applied to a Classification, MICMAC)分析探討影響投標營造商資質審查機制中,各準則間的相關性及淘選出具決定性的準則,以讓營造工程的業主在選擇營造商時能著重考量。
    本研究回顧過去文獻並邀請多位專家學者進行投標營造商資質審查各準則間之關聯評估,並以詮釋結構模式分析各準則之間的因果關係,後續並以影響矩陣乘法分類法確認出資質審查的決定性準則。研究結果顯示詮釋結構模式為投標營造商資質審查之準則建立了一個七層的層級架構,其中最具決定影響的準則分別是工程經驗、管理技術、管理責任等三個。而根據各準則的驅動力和依賴性依據影響矩陣乘法分類法將其分為四種類型集合。這項研究的結果亦表明,詮釋結構模式可對於投標營造商資質審查複雜的準則關係進行排序和幫助業主在營造工程專案招標策略規劃中選擇合格的營造商。


    In order to select a qualified contractor with the ability to perform the contract, it is a common method for the owner of the construction project to carry out the pre-qualification review of the contractor. The reviewing of contractor prequalification is a multi-criteria making-decision process, and the more decisive criteria in this process should be the factors that the construction project owners should pay more attention to when selecting contractors. Therefore, this study applies the Interpretative Structural Modeling (ISM) and the Matrices Impacts Croises-Multiplication Appliance Classement (MICMAC) to analyze and discuss the relationships between the various contractor prequalification criteria and to select the decisive criteria.
    The first stop of this study was to review the literatures and invited several experts and scholars to evaluate the relationships between the criteria for the contractor prequalification, and the second stop was to analyze the relationship between the criteria using ISM. And confirmed the decisive criteria for the contractor prequalification by MICMAC method.
    The research results show that we use ISM method to establish seven-layer hierarchical structure for the contractor prequalification criteria, among which the most decisive criteria are engineering experience, management knowledge and management accountability. In addition, based on the driving power and dependence power of each criterion, they can be grouped into four clusters according to MICMAC. The results of this study also show that ISM can sort the complex criteria for the contractor prequalification and help the owners to select qualified contractors in the bidding strategy planning of construction projects.

    摘要 I Abstract II 誌謝 IV 表目錄 VII 圖目錄 IX 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 3 1.3 論文架構 4 第二章 文獻回顧 5 2.1投標營造商資質審查之評估模型 5 2.1.1 因子加權模型 8 2.1.2 專家系統模型 9 2.1.3 多屬性分析模型 10 2.1.4 模糊理論模型 11 2.1.5 計劃評核術模型 12 2.1.6 層級分析法模型 13 2.1.7 多屬性效用模型 13 2.1.8 案例式推理模型 14 2.1.9 類神經網路模型 15 2.2投標營造商資格審查之評估準則 15 2.3 詮釋結構模式在營建工程相關領域之運用 22 2.3.1影響建築資訊模型推展之因子分析 23 2.3.2.營建專案開發成功之因子分析 24 2.3.3土壤液化因子分析 25 第三章 研究方法 27 3.1 詮釋結構模式的概念與方法 27 3.2 影響矩陣乘法分類法 31 第四章 分析成果 35 4.1評估準則的選擇與評價 35 4.2以詮釋結構模式分析各評估準則間之關聯性 37 4.2.1 發展結構自我影響矩陣 37 4.2.2 發展可達矩陣(reachability matrix) 38 4.2.3 發展層級區分 39 4.2.4 詮釋結構模式層級架構模型的形成 41 4.2.5 詮釋結構模式成果與文獻之比較 42 4.3 以影響矩陣乘法分類法分析各評估準則之特性分類 48 第五章 結論與建議 49 5.1 詮釋結構模式分析說明結論 49 5.2 詮釋結構模式分析與文獻比較結論 50 5.3 影響矩陣乘法分類法分析結論 50 5.4 本研究之貢獻與後續研究建議 51 參考文獻 54

    1.A.P., S. (1977). Interpretive Structural Modeling: Methodology for Large-Scale Systems.
    2.Abudayyeh, O., Zidan, S. J., Yehia, S., and Randolph, D. (2007). Hybrid prequalification-based, innovative contracting model using AHP. Journal of management in engineering, 23(2), 88-96.
    3.Ahmad, M., Tang, X.-W., Qiu, J.-N., and Ahmad, F. (2019). Interpretive structural modeling and MICMAC analysis for identifying and benchmarking significant factors of seismic soil liquefaction. Applied Sciences, 9(2), 233.
    4.Al-Harbi, K. M. A.-S. (2001). Application of the AHP in project management. International Journal of project management, 19(1), 19-27.
    5.Alzahrani, J. I., and Emsley, M. W. (2013). The impact of contractors’ attributes on construction project success: A post construction evaluation. International Journal of project management, 31(2), 313-322.
    6.Arcade, J., Godet, M., Meunier, F., and Roubelat, F. (1999). Structural analysis with the MICMAC method and Actor''s strategy with MACTOR method.
    7.Arslan, G., Kivrak, S., Birgonul, M. T., and Dikmen, I. (2008). Improving sub-contractor selection process in construction projects: Web-based sub-contractor evaluation system (WEBSES). Automation in Construction, 17(4), 480-488.
    8.Attri, R., DEV, N., and Sharma, V. (2013). Interpretive structural modelling (ISM) approach: an overview. Research journal of management sciences, 2319(2), 1171.
    9.Bakhtari, A. R., Waris, M. M., Sanin, C., and Szczerbicki, E. (2021). Evaluating Industry 4.0 implementation challenges using interpretive structural modeling and fuzzy analytic hierarchy process. Cybernetics and Systems, 52(5), 350-378.
    10.Bishop, P. (1994). From anticipation to action: A handbook of strategic prospective: Michel Godet 277 pages, Paris, UNESCO Publishing, 1993. In: Pergamon.
    11.Bubshait, A. A., and Al-Gobali, K. H. (1996). Contractor prequalification in Saudi Arabia. Journal of management in engineering, 12(2), 50-54.
    12.Chiang, F.-Y., Vincent, F. Y., and Luarn, P. (2017). Construction contractor selection in Taiwan using AHP. International Journal of Engineering and Technology, 9(3), 211.
    13.Chiang, F. Y., and Luarn, P. (2014). Contractor Prequalification in Taiwan. Advanced Materials Research,
    14.Ciliberti, F., Pontrandolfo, P., and Scozzi, B. (2008). Investigating corporate social responsibility in supply chains: a SME perspective. Journal of cleaner production, 16(15), 1579-1588.
    15.Doloi, H., Iyer, K., and Sawhney, A. (2011). Structural equation model for assessing impacts of contractor's performance on project success. International Journal of project management, 29(6), 687-695.
    16.El-Sawalhi, N., Eaton, D., and Rustom, R. (2007). Contractor pre-qualification model: State-of-the-art. International Journal of project management, 25(5), 465-474.
    17.Farooq, U., Rehman, S. K. U., Javed, M. F., Jameel, M., Aslam, F., and Alyousef, R. (2020). Investigating BIM implementation barriers and issues in Pakistan using ISM approach. Applied Sciences, 10(20), 7250.
    18.Godet, M. (1979). The crisis in forecasting and the emergence of the" prospective" approach, with case studies in energy and air transport/translated by JD Pearse, Harry k. Lennon. Michel Godet.
    19.Godet, M. (1994). From anticipation to action: a handbook of strategic prospective.
    20.Hatush, Z., and Skitmore, M. (1997a). Assessment and evaluation of contractor data against client goals using PERT approach. Construction management and economics, 15(4), 327-340.
    21.Hatush, Z., and Skitmore, M. (1997b). Criteria for contractor selection. Construction management and economics, 15(1), 19-38.
    22.Hatush, Z., and Skitmore, M. (1998). Contractor selection using multicriteria utility theory: an additive model. Building and Environment, 33(2-3), 105-115.
    23.He, Z., and Chen, H. (2021). An ism-based methodology for interrelationships of critical success factors for construction projects in ecologically fragile regions: take korla, China as an example. Applied Sciences, 11(10), 4668.
    24.Holt, G. D. (1998). Which contractor selection methodology? International Journal of project management, 16(3), 153-164.
    25.Holt, G. D., Olomolaiye, P. O., and Harris, F. C. (1994a). Evaluating prequalification criteria in contractor selection. Building and Environment, 29(4), 437-448.
    26.Holt, G. D., Olomolaiye, P. O., and Harris, F. C. (1994b). Factors influencing UK construction clients' choice of contractor. Building and Environment, 29(2), 241-248.
    27.Holt, G. D., Olomolaiye, P. O., and Harris, F. C. (1995). A review of contractor selection practice in the UK construction industry. Building and Environment, 30(4), 553-561.
    28.Huang, W.-H., Tserng, H. P., Liao, H.-H., Yin, S. Y., Chen, P.-C., and Lei, M. C. (2013). Contractor financial prequalification using simulation method based on cash flow model. Automation in Construction, 35, 254-262.
    29.Kapse, C. P., Kumar, A., Dash, M. K., Zavadskas, E. K., and Luthra, S. (2018). Developing textile entrepreneurial inclination model by integrating experts mining and ISM-MICMAC. International Journal of Production Research, 56(14), 4709-4728.
    30.Kumaraswamy, M., and Dissanayaka, S. (1996). Performance-oriented building procurement systems. Building Technology and Management.
    31.Kumaraswamy, M. M., and Matthews, J. D. (2000). Improved subcontractor selection employing partnering principles. Journal of management in engineering, 16(3), 47-57.
    32.Lam, K., Ng, S. T., Tiesong, H., Skitmore, M., and Cheung, S. (2000). Decision support system for contractor pre‐qualification—artificial neural network model. Engineering Construction and Architectural Management, 7(3), 251-266.
    33.Lam, K. C., Palaneeswaran, E., and Yu, C.-y. (2009). A support vector machine model for contractor prequalification. Automation in Construction, 18(3), 321-329.
    34.Mahdi, I. M., Riley, M. J., Fereig, S. M., and Alex, A. P. (2002). A multi‐criteria approach to contractor selection. Engineering, Construction and Architectural Management.
    35.McCabe, B., Tran, V., and Ramani, J. (2005). Construction prequalification using data envelopment analysis. Canadian Journal of Civil Engineering, 32(1), 183-193.
    36.Ng, S., and Skitmore, R. (1999). Client and consultant perspectives of prequalification criteria. Building and Environment, 34(5), 607-621.
    37.Ng, S. T. (2001). EQUAL: a case-based contractor prequalifier. Automation in Construction, 10(4), 443-457.
    38.Ng, S. T., and Tang, Z. (2010). Labour-intensive construction sub-contractors: Their critical success factors. International Journal of project management, 28(7), 732-740.
    39.Ng, T., and Wan, W. Y. (2005). Appraisal of subcontractor performance-criteria and their importance. Proceedings of CIB2005-Advancing Facilities Management and Construction through Innovation, June 13-16, Finlandia Hall, Helsinki, Finland (ed. AS Kazi).
    40.Nieto-Morote, A., and Ruz-Vila, F. (2012). A fuzzy multi-criteria decision-making model for construction contractor prequalification. Automation in Construction, 25, 8-19.
    41.Norman, R. Z. (1965). Structural models: An introduction to the theory of directed graphs.
    42.Patil, S., Konnur, B., Devthanekar, P., and Patil, K. (2020). Review of contractor pre-qualification criteria and their impact on project success factors. Int. J. Res. Eng. Sci. Manag, 3, 298-302.
    43.Plebankiewicz, E. (2009). Contractor prequalification model using fuzzy sets. Journal of civil engineering and management, 15(4), 377-385.
    44.Plebankiewicz, E. (2012). A fuzzy sets based contractor prequalification procedure. Automation in Construction, 22, 433-443.
    45.Russell, J. S. (1991). Contractor failure: analysis. Journal of Performance of Constructed Facilities, 5(3), 163-180.
    46.Russell, J. S., Hancher, D. E., and Skibniewski, M. J. (1992). Contractor prequalification data for construction owners. Construction Management and Economics, 10(2), 117-135.
    47.Russell, J. S., and Skibniewski, M. J. (1988). Decision criteria in contractor prequalification. Journal of management in engineering, 4(2), 148-164.
    48.Russell, J. S., and Skibniewski, M. J. (1990). QUALIFIER-1: Contractor prequalification model. Journal of Computing in Civil Engineering, 4(1), 77-90.
    49.Russell, J. S., Skibniewski, M. J., and Cozier, D. R. (1990). Qualifier-2: knowledge-based system for contractor prequalification. Journal of construction engineering and management, 116(1), 157-171.
    50.Singh, D., and Tiong, R. L. (2005). A fuzzy decision framework for contractor selection. Journal of construction engineering and management, 131(1), 62-70.
    51.Singh, M., and Kant, R. (2008). Knowledge management barriers: An interpretive structural modeling approach. International Journal of Management Science and Engineering Management, 3(2), 141-150.
    52.Sonar, H., Khanzode, V., and Akarte, M. (2020). Investigating additive manufacturing implementation factors using integrated ISM-MICMAC approach. Rapid Prototyping Journal, 26(10), 1837-1851.
    53.Talib, F., Rahman, Z., and Qureshi, M. (2011). Analysis of interaction among the barriers to total quality management implementation using interpretive structural modeling approach. Benchmarking: An International Journal, 18(4), 563-587.
    54.Tan, T., Chen, K., Xue, F., and Lu, W. (2019). Barriers to Building Information Modeling (BIM) implementation in China's prefabricated construction: An interpretive structural modeling (ISM) approach. Journal of cleaner production, 219, 949-959.
    55.Thamsatitdej, P., Boon-Itt, S., Samaranayake, P., Wannakarn, M., and Laosirihongthong, T. (2017). Eco-design practices towards sustainable supply chain management: interpretive structural modelling (ISM) approach. International Journal of Sustainable Engineering, 10(6), 326-337.
    56.Venkatesh, V., Rathi, S., and Patwa, S. (2015). Analysis on supply chain risks in Indian apparel retail chains and proposal of risk prioritization model using Interpretive structural modeling. Journal of Retailing and Consumer Services, 26, 153-167.
    57.Warfield, J. (1976). Societal Systems, Planning, Policy and Complexity. In: New York: John Wiley and Sons.
    58.Warfield, J. N. (1974). Developing interconnection matrices in structural modeling. IEEE Transactions on Systems, Man, and Cybernetics(1), 81-87.
    59.Yawei, L., Shouyu, C., and Xiangtian, N. (2005). Fuzzy pattern recognition approach to construction contractor selection. Fuzzy Optimization and Decision Making, 4, 103-118.
    60.Yu, V. F., and Hu, K.-J. (2013). An integrated approach for prioritizing key factors in improving the service quality of nursing homes. Mathematical Problems in Engineering, 2013.
    61.Zayed, E. O., and Yaseen, E. A. (2021). Barriers to sustainable supply chain management implementation in Egyptian industries: an interpretive structural modeling (ISM) approach. Management of environmental quality: an international journal, 32(6), 1192-1209.

    無法下載圖示
    Full text public date This full text is not authorized to be published. (Internet public)
    Full text public date 2073/07/13 (National library)
    QR CODE