簡易檢索 / 詳目顯示

研究生: 劉名祐
Ming-Yu - Liu
論文名稱: 利用混合式機器學習演算法之音樂情緒辨識系統
Music Emotion Recognition System Using Hybrid Machine Learning Algorithms
指導教授: 林敬舜
Ching-Shun Lin
口試委員: 陳維美
Wei-Mei Chen
林昌鴻
Chang-Hong Lin
王煥宗
Huan-Chun Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 63
中文關鍵詞: 音樂情緒辨識特徵擷取泰勒情緒平面支持向量機深度信念網路正規化代數乘法
外文關鍵詞: Music emotion recognition, Feature extract, Thayer's arousal-valence plane, Support vector machine, Deep belief network, Normalized algebraic product
相關次數: 點閱:352下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 音樂情緒辨識(Music Emotion Recognition - MER)分析了音樂與人之間的關係,音樂情緒辨識在音樂理解、音樂檢索等其他相關應用是有幫助的。隨著音樂數量的增加,透過情緒來挑選音樂的需求也跟著出現。音樂情緒辨識需要考慮到音樂心理學的特性,雖然音樂情緒辨識已經發展了一段時間,但仍未有一個非常準確的音樂情緒辨識系統。

    在本論文中,我們提出基於兩種音樂格式的音樂情緒辨識系統,兩個音樂格式分別使用不同的機器學習模型,本系統包括了數位訊號音樂情緒辨識、MIDI音樂情緒辨識及決策模型三個部份;在數位訊號擷取WAVE的37個特徵,並透過RreliefF演算法計算每一個特徵權重,並根據權重的高低依序帶入支持向量機(Support Vector Machine, SVM)分類情緒,並觀察辨識結果;MIDI音樂情緒辨識部份的特徵則包括單位時間特徵、全域特徵及樂器特徵,其使用的機器學習模型為深度信念網路(Deep Belief Network, DBN);最後,我們使用正規化代數乘法(Normalized Algebraic Product, NAP)整合上述兩者的辨識結果。


    Music emotion recognition (MER) detects and analyzes the relation between human emotion and music clips. MER is helpful in music understanding, music retrieval, and other music-related applications. As volume of online musical contents expands rapidly in recent years, demands for retrieval by emotion have also been emerging. MER needs to take into the characteristics of music psychology into consideration. Although MER has been developed for years, there is currently no well-developed emotion model for music emotion representation.

    In this thesis, we propose a music emotion recognition system which is based on two music formats with corresponding machine learning models. More specifically, this system includes WAVE based MER, MIDI based MER and a decision model. WAVE based MER extracts 37 features from wave files and calculates weight of each feature by RreliefF. The selected features sent to support vector machine (SVM) for training are according to sorted weights. The training data for MIDI based MER classifier, deep belief network (DBN), include time dependent and instrument features. Moreover, we also introduce the normalized algebraic product (NAP) as the decision maker for integrating the recognition from both classifiers.

    摘要 I Abstract II 目錄 III 圖片目錄 V 表目錄 VII 第一章 導論 1 1.1 前言 1 1.2 文獻探討 1 1.2.1 音樂格式 1 1.2.2 情緒標記 2 1.2.3 音樂特徵 2 1.3 本文架構 3 第二章 數位音樂特徵與特徵選擇 5 2.1 音樂特徵 5 2.1.1 韻律 5 2.1.1.1 Beats Spectrum 5 2.1.1.2 Event Density 7 2.1.1.3 Tempo 7 2.1.1.4 Pulse Clarity 7 2.1.2 音色 8 2.1.2.1 Zero Crossing Rate 8 2.1.2.2 MFCC 8 2.1.2.3 Rolloff 9 2.1.2.4 Brightness 9 2.1.2.5 Roughness 9 2.1.3音調 11 2.1.3.1 Chromagram 11 2.1.3.2 Mode 11 2.1.4.1 Inharmonicity 11 2.1.5強弱 12 2.1.5.1 RMS Energy 12 2.1.5.2 Low Energy 12 2.2特徵選擇 13 2.2.1 Relief 13 2.2.2 ReliefF 15 2.2.3 RreliefF 16 2.3 深度學習 18 2.3.1 支持向量機 18 2.3.2 類神經網路 21 2.3.2.1 限制玻爾茲曼機 21 2.3.2.2 深度信念網路 23 第三章 MIDI特徵及辨識系統 26 3.1 MIDI特徵提取 26 3.1.1 單位時間特徵 27 3.1.2 全域特徵 27 3.1.3 樂器特徵 28 3.2正規化代數乘法 28 第四章 實驗結果 38 4.1 資料庫建立 38 4.2 情緒標記 39 4.3 辨識率計算 40 4.4 WAVE based辨識結果 40 4.5 MID based辨識結果 48 4.6 WAVE based與MIDI based之實驗結果整合 50 第五章 結論與未來展望 51 5.1結論 51 5.2未來展望 51 參考文獻 53

    [1] 蔡振家,音樂認知心理學,臺大出版中心,2013。
    [2] T. Li and M. Ogihara, "Content-based music similarity search and emotion detection," International Conference on Acoustics Speech and Signal Processing, vol. 5, pp. 17-21, 2004.
    [3] C. S. Lin, M. Y. Liu, W. W. Hsiung, and J. S. Jhang, "Music emotion recognition based on two-level support vector classification," International Conference on Machine Learning and Cybernetics, pp. 375-379, Jul. 2016.
    [4] R. E. Thayer, The Biopsychology of Mood and Arousal, Oxford University Press, 1989.
    [5] S. H. Chen, Y. S. Lee, W.C. Hsieh and J. C. Wang, "Music emotion recognition using deep Gaussian process," Association Annual Summit and Conference, pp. 495-498, 2015.
    [6] Y. H. Yang, Y. C. Lin, Y. F. Su and H. H. Chen, "Music emotion classification : A regression approach," International Conference on Multimedia and Expo, pp. 208-211, 2007.
    [7] Y. L. Deng, Y. Y. Lv, M. L. Liu and Q. Y. Lu, "A regression approach to categorical music emotion recognition," Progress in Informatics and Computing, pp. 257-261, 2015
    [8] X. Wang, Y. Q. Wu, X. O. Chen and D. S. Yang, "A two-layer model for music pleasure regression," Multimedia and Expo Workshops, pp. 1-6, 2013
    [9] Musicovery, < http://musicovery.com/ >, accessed in December 21st, 2016.
    [10] G. Lise and I. Peretz, "Mode and tempo relative contributions to "happy-sad" judgments in equitone melodies," Cognition and Emotion, vol. 17, no. 1, pp. 25-40, 2003.
    [11] J. Foote and S. Uchihashi, "The beat spectrum: A new approach to rhythm analysis," International Conference on Multimedia and Expo, pp. 881-884, Aug. 2001.
    [12] J. P. Bello, L. Daudet, S. Abdallah, and C. Duxbury, "A tutorial on onset detection in music signal," IEEE Transactions Speech and Audio Processing, vol. 13, no. 5, Sep. 2005.
    [13] G. Tzanetakis and P. Cook, "Musical genre classification of audio signals," IEEE Transactions Speech and Audio Processing, vol. 10, no. 5, pp. 293-302, Jul. 2002.
    [14] E. Scheirer and M. Slaney, "Construction and evaluation of a robust multifeature speech/music discriminator," IEEE International Conference on Acoustics Speech and Signal Processing, vol. 2, pp. 1331-1334, Apr. 1997.
    [15] L. V. Immerseel and J. Marten, "Pitch and voice/unvoiced determination with an auditory model," The Journal of the Acoustical Society of America, vol. 91, no. 6, pp. 3511-3526, Jun. 1992.
    [16] M. Leman, "Visualization and calculation of the roughness of acoustical musical signals using the synchronization index model(SIM)," COST-G6 Conference on Digital Audio Effects, pp. 125-130, Dec. 2000.
    [17] M. A. Bartsch and G. H. Wakefield, "Audio thumbnailing of popular music using chroma-based representation," IEEE Transactions on Multimedia, vol. 7, no. 1, pp. 96-104, Feb. 2005.
    [18] Y. H. Yang and H. H. Chen, Music Emotion Recognition, CRC Press, 2011.
    [19] K. Kira and L. A. Rendell, "A practical approach to feature selection," Machine learning, pp. 249-256, 1992.
    [20] I. Kononenko, "Estimating attributes: analysis and extensions of Relief," European Conference on Machine Learning, vol. 784, pp. 171-182, Jan. 1994.
    [21] M. Robnik Sikonja and I. Kononenko, "An adaptation of Relief for attribute estimation in regression," International Conference on Machine Learning, pp. 296-304, 1997.
    [22] H. Liu and H. Motoda, Computational Methods of Feature Selection, Chapman & Hall/CRC, 2007.
    [23] M. R. Sikonja and I. Kononenko, "Theoretical and Empirical Analysis of ReliefF and RReliefF," Machine Learning Journal, vol. 53, no. 23, pp. 23-69, Oct. 2003.
    [24] B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifiers," Computational Learning Theory, pp. 144-152 , 1992.

    無法下載圖示 全文公開日期 2022/01/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE