簡易檢索 / 詳目顯示

研究生: 周金鋒
Chin-feng Chou
論文名稱: 超寬頻系統射頻前端電路模組之研究
A study of RF front-end circuit module for ultra wideband system
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 瞿大雄
Tah-Hsiung Chu
楊成發
Chang-Fa Yang
曾昭雄
Chao-Hsiung Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 102
中文關鍵詞: 超寬頻脈衝產生器缺陷接地架構魔術T微波取樣器
外文關鍵詞: ultra wideband, pulse generator, defected ground structure, magic-T, microwave sampler
相關次數: 點閱:392下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為超寬頻系統收發端射頻前端電路模組之研究,論文中將應用ADS電路模擬軟體及HFSS電磁模擬軟體進行電路設計、探討與分析,並以實測驗證電路之效能。
    論文首先探討發射端射頻前端電路模組,並建立脈衝電路之關鍵元件 - 步級回復二極體之等效模擬參數,以提高設計脈衝產生電路的準確性。接著設計可產生高斯脈衝及單週期脈衝的脈衝產生器。此外為避免超寬頻系統與無線區域網路之間潛在的干擾,吾人在脈衝整形電路上引入缺陷接地架構設計一款帶拒濾波器,使得該超寬頻脈衝在無線區域網路的頻段(5至6GHz)具有帶拒的特性。
    在接收端射頻前端電路模組方面,吾人先以文獻裡微波取樣器進行改良,經模擬及實測結果進行動態範圍及轉換線性度的分析探討。接著將微波取樣器中的魔術T電路進行微型化設計,該新型電路結構為三層板架構,利用微帶線與孔槽線間的電場耦合特性,並搭配取樣二極體來實現微波取樣器,經與文獻之改良電路比較,發覺其動態範圍及轉換線性度均更為優良,且電路尺寸縮小75%,故實現微型化及高效能之微波取樣器。
    本論文在超寬頻系統射頻前端電路模組的設計方面,具有相當的應用價值,並建立未來研究之基礎。


    This thesis investigates the RF front-end circuit module for the ultra wideband system (UWB). In the study we use the circuit simulation tool Agilent ADS and the electromagnetic simulation software Ansoft HFSS to perform the circuit design, analysis, and verification.
    Firstly, we deal with the RF front-end circuits in the transmitter. By building up the equivalent circuit model of the step recovery diode (SRD), the performance pf the pulse generator can be substantially enhanced. Two pulse generators, the Gaussian pulse generator and the monocycle generator, are designed, fabricated, and experimentally demonstrated. In addition, to alleviate the potential interference between the UWB systems and the WLAN radios, in Chapter 3 we introduce a three-order band-rejection filter to the pulse shaper at the frequency range of 5 to 6 GHz by utilizing the defected ground structure (DGS).
    In the study of RF front-end circuits in the receiver, we first reproduce a microwave sampler in the literature on a low-cost FR4 substrate. The analysis including dynamic range and conversion linearity are discussed in terms of both simulated and measured results. To miniaturize the circuit dimension of the microwave sampler, in Chapter 5 we proposed a new magic-T circuit design. This novel magic-T is realized by a three-layered fabrication process with the help of electrically coupled microstrip lines through slotted aperture on the common ground plane. The new microwave sampler is composed of this miniaturized magic-T and the sampling bridge with two Schottky diodes. The experimental results demonstrate significant improvement on both dynamic range and conversion linearity, and the percentage of size reduction is as high as 75%.
    This thesis provides some valuable information for practical UWB applications and also establishes the fundamental building blocks for future study on pulse radios.

    目錄 摘要 II Abstract III 目錄 IV 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究內容 3 1.4 章節概述 4 第二章 UWB系統之發射端射頻前端電路模組 5 2.1 前言 5 2.2 步級回復二極體之模擬參數 7 2.3 高效能高斯脈衝產生器 8 2.3-1 模擬電路圖 8 2.3-2 高斯脈衝產生電路之工作原理 9 2.3-3 高斯脈衝產生電路之模擬結果 9 2.3-4 高斯脈衝產生電路之實際量測結果 10 2.3-5 觸發源之頻率變化對高斯脈衝產生器之影響 12 2.3-6 觸發源之振幅變化對高斯脈衝產生器之影響 14 2.4 單週期脈衝產生器 15 2.4-1 單週期脈衝產生器之模擬電路架構圖 15 2.4-2 單週期脈衝產生器之工作原理 16 2.4-3 單週期脈衝產生器之模擬結果圖 16 2.4-4 單週期脈衝產生器之實際量測結果 18 2.4-5 觸發源之頻率變化對單週期脈衝產生器之影響 21 2.4-6 觸發源之振幅變化對單週期脈衝產生器之影響 23 2.5 結語 25 第三章 脈衝整形器 26 3.1 前言 26 3.2 帶拒濾波器 27 3.2-1 缺陷接地架構 (DGS) 之簡介 27 3.2-2 帶拒濾波器之設計流程 27 3.2-3 帶拒濾波器之模擬結果 33 3.2-4 帶拒濾波器之實際測量結果 35 3.3 脈衝整形器 36 3.3-1 脈衝整形器之模擬結果 36 3.3-2 脈衝整形器之實際量測結果 38 3.4 結語 42 第四章 UWB系統之接收端射頻前端電路模組 44 4.1 前言 44 4.2 接收端RF前端電路模組之工作原理 45 4.3 微波取樣器之動作原理 46 4.4 本地樣板脈衝串列(LO)之脈衝產生器 47 4.5 微波取樣器之實體電路架構 47 4.6 微波取樣器之電路模擬結果 48 4.6-1 微波取樣器模擬之等效電路 49 4.6-2 微波取樣器之魔術T電路 51 4.6-3 微波取樣器之取樣器後端電路 53 4.6-4 整合微波取樣器之等效電路與電磁架構 54 4.7 微波取樣器之量測結果 57 4.7-1 實際量測設備及量測架構 57 4.7-2 微波取樣器之量測結果 59 4.7-3 微波取樣器之動態分析 60 4.8 微波取樣器以接收脈衝訊號之量測結果 65 4.8-1 RF訊號為高斯脈衝訊號 65 4.8-2 RF訊號為單週期脈衝訊號 67 4.8-3 RF訊號為單週期脈衝訊號之動態分析 68 4.9 結語 70 第五章 微型化微波取樣器 71 5.1 前言 71 5.2 微型化魔術T電路 71 5.2-1 微型化魔術T電路之電路模擬架構 71 5.2-2 微型化魔術T電路之工作原理 72 5.2-3 微型化魔術T電路之電磁模擬結果 73 5.3整合電磁模擬及等效電路之模擬分析 76 5.3-1 模擬電路架構圖 76 5.3-2 模擬結果圖 76 5.4 微型化魔術T電路之量測結果 79 5.4-1 微型化魔術T電路之實體架構圖 79 5.4-2 微型化魔術T電路之量測結果 79 5.5 微型化微波取樣器之量測結果 82 5.5-1 微型化微波取樣器之實體及量測架構圖 82 5.5-2 微型化微波取樣器之量測結果 84 5.5-3 微型化微波取樣器之動態分析 85 5.6 微波取樣器以接收脈衝訊號之量測結果 90 5.6-1 RF訊號為高斯脈衝訊號 91 5.6-2 RF訊號為單週期脈衝訊號 93 5.6-3 RF訊號為單週期脈衝訊號之動態分析 94 5.7 結語 97 第六章 結論 98 6.1 總結 98 6.2 未來研究及發展方向 98 參考文獻 100

    [1] Task group 3a homepage: http://www.ieee802.org/15/pub/TG3a.html
    [2] UWB, Forum homepage: http://www.uwbforum.org/
    [3] Z. N. Chen, X. H. Wu, N. Yang and M. Y. W. Chia, “Considerations for source pulses and antennas in UWB radio systems,” IEEE Trans. Antennas Propag., vol. 52, pp. 1739-1748, July 2004.
    [4] J. L. Moll, S. A. Hamilton, “Physical modeling of the pulse and harmonic step recovery diode for generation circuits,” Proc. of IEEE, July. 1969, pp. 1250-1259.
    [5] J. Han and C. Nguyen, “A new ultra-wideband, ultra-short monocycle pulse generator with reduced ringing,” IEEE Microw. Wireless Compon. Lett., vol. 12, pp.206-208, June 2002.
    [6] J. Han and C. Nguyen, “Coupled-slotline-hybrid sampling mixer integrated with step-recovery-diode pulse generator for UWB applications,” IEEE Trans. Microw. Theory Tech., vol. 53 , pp. 1875 – 1882, June 2005.
    [7] Metelics step recovery diode spice model :http://www.metelics.com/spiceStepRecovery.html
    [8] H. Kida, ”Measured and simulated results of impulse generator using step recovery diode,” IEICE Trans. Fundamentals, vol.E88-A, No.9, pp.2381-2383,Sept. 2005.
    [9] D.H. Kim, G.N. Bang, C. Park, “Design and characteristics of high order derivative gaussian pulse generator for DS-UWB.” Proc. of APMC 2006.
    [10] D.J. Woo, T.K. Lee, J.W. Lee, C.S. Pyo, W.K. Choi, “Novel U-slot and V-slot DGSs for bandstop filter with improved Q factor,” IEEE Trans. Microw. Theory Tech., vol. 54 , June 2006.
    [11] D.J. Woo, T.K. Lee, “Suppression of harmonics in wilkinson power divider using dual-band rejection by asymmetric DGS,” IEEE Trans. Microw. Theory Tech., vol. 53 , No.6, June 2005.
    [12] J.S. Hong, M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc.,2001.
    [13] 馬自莊、楊成發、吳俊杰、鄭柏凱、周金鋒, “時域反射量測系統之脈衝產生器研製”,期末報告, 2005年12月.
    [14] 馬自莊、楊成發、周金鋒, “液面時域反射量測系統射頻電路模組研製”,期末報告, 2006年12月.
    [15] Finetek Co. Ltd., technical report on TDR system.
    [16] K. A. Remley and D. F. Williams, “Sampling oscilloscope models and calibrations”, IEEE MTT-S Int. Microw. Symp. Dig. Philadelphia, PA, 2003, pp. 1507-1510.
    [17] M.W. Katsube, Y.M.M. Antar, A. Ittipiboon, M. Cuhaci, “A novel aperture coupled microstrip magic-T,” IEEE Microw. Guided Wave Lett., vol. 2, No. 6, pp. 245-246, June. 1992.
    [18] M.Davidovitz, “A compact planar magic-T junction with aperture-coupled difference port,” IEEE Microw. Guided Wave Lett., vol. 7, No. 8, pp. 217-218, Aug. 1997.
    [19] A.F.K-Sysoev, “Generation and radiation of UWB-signals, ”Proc. of the 33rd European Microwave Conference. Munich 2003.
    [20] S. Hamilton and R. Hall, “Shunt-mode harmonic generation using step recovery diodes,” Microwave J., pp. 69–78, Apr. 1967.
    [21] J. S. Lim, C. S. Kim, D. Ahn, Y.C. Jeong, “Design of low-pass filter using defected ground structure,” IEEE Trans. Microw. Theory Tech, vol. 53, No. 8, pp. 2539–2545, Aug. 2005.
    [22] D. Ahn, J. S. Park, C. S. Kim, J. N. Kim, Y. Qian, and T. Itoh, “A design of the low-pass filter using the novel microstrip defected ground structure,” IEEE Trans. Microw. Theory Tech., vol. 49, No. 1, pp. 86–93, Jan. 2001.
    [23] Q. Xue, K. M. Shum, and C. H. Chan, “Novel 1-D microstrip PBG cell,” IEEE Microw. Guided Wave Lett., vol. 10, No. 10, pp. 403–405, Oct. 2000.
    [24] Mini Special Issue on Ultra-wideband, IEEE Trans. Microw. Theory Tech.,2004.
    [25] A. B. Parr, B. L. Cho Z. Ding, “ A new UWB pulse generator for FCC spectral masks”, April 2003, Vehicular Technology Conf, vol. 3, pp. 1664~1666.
    [26] Z.N. Low, J.H. Cheong, C.L. Law, “Novel low cost higher order derivative gaussian pulse generator circuit.” , ICCS 2004, The 9th International conference, pp.20~34.
    [27] J. Han and C. Nguyen, “Integrated balanced sampling circuit for ultra-wideband communications and radar systems.” IEEE Microw. Wireless Compon. Lett. , Vol. 14, No. 10, October 2004.
    [28] M. Sharifolnasabi, M. Mohhammad Taheri, M. Kamarei, “CAD of 20GHz hybrid sampling phase detector,” Int. Crimean Conference on Microwave and Telecommunication Technology, Scvastopol, Crimea, Ukraine, Sep. 2002, pp.152-154.
    [29] M. Aikawa and H. Ogawa, “A new MIC magic-T using coupled slot lines,” IEEE Trans. Microw. Theory Tech., vol. MTT-28, no. 6, pp. 523–528, Jun. 1980.
    [30] M. Davidovitz, R. A. Sainati, S. J. Fraasch, “A noncontact interconnection through an electrically thick ground plate common to two microstrip lines,” IEEE Trans. Microw. Theory Tech., vol. 43, pp. 753–759, Apr. 1995.
    [31] L. Fan, C. Ho, S. Kanamaluru, K. Chang, “Wide-band reduced-size uniplanar magic-T, hybrid-ring, and de Ronde’s CPW-slot couplers,” IEEE Trans. Microw. Theory Tech., vol. 43, pp. 2749–2758, Dec. 1995.
    [32] A.A. Omar, N.I. Dib, “Analysis of slot-coupler transitions from microstrip-to-microstrip-to-waveguides,” IEEE Trans. Microw. Theory Tech., vol. 45, No.7, pp. 1127–1132, July. 1997.

    QR CODE