簡易檢索 / 詳目顯示

研究生: 吳慧莉
Felycia - Edi Soetaredjo
論文名稱: 西米棕櫚澱粉之乙醯化以及從西米棕櫚澱粉萃取廢水中回收酚化合物之研究
SAGO (METROXYLON SAGU): STUDY OF STARCH ACETYATION AND RECOVERY OF PHENOLIC COMPOUNDS FROM SAGO WASTE EFFLUENT
指導教授: 朱義旭
Yi-Hsu Ju
Suryadi Ismadji
Suryadi Ismadji
口試委員: Ahmed Fazary
Ahmed Fazary
Truong Chi Thanh
Truong Chi Thanh
李明哲
Lee Ming-Jer
李振剛
Lee Cheng Kang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 104
中文關鍵詞: metroxylon saguphenolic compoundsadsorptionsupercritical desorption
外文關鍵詞: metroxylon sagu, phenolic compounds, adsorption, supercritical desorption
相關次數: 點閱:206下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 西米棕櫚在東南亞為未充分利用但是為重要之原生農作物。西米澱粉可輕易透過乙醯化(acetylation)改善其物化及功能性質以加強、推廣其應用。醋酸澱粉可以碘為觸媒、在微波幫助下將澱粉與醋酸酐及醋酸反應而得。醋酸澱粉之乙醯化取代度(degree of acetylation)及物化性質受澱粉與對乙醯化劑比例、所選擇之乙醯化劑及碘濃度之影響很大,但是反應時間卻不是重要影響因素。
    在從西米棕櫚髓中萃取澱粉時,棕櫚髓漿在沉降過程中由於酚化合物受到多酚氧化酶之氧化而產生褐變(browning)。本研究探討以活性碳從西米澱粉萃取廢水中吸附兒茶素(catechin)及表兒茶素(epicatechin),然後以超臨界二氧化碳將之脫附。在探討吸附動力及平衡時使用的是合成的兒茶素及表兒茶素溶液。利用吸附處理西米澱粉萃取廢水,再以超臨界二氧化碳脫附,証實本研究之方法有潛力應用於工業化從西米澱粉萃取廢水中之兒茶素及表兒茶素。
    本研究也探討兒茶素及表兒茶素在超臨界二氧化碳中之溶解度數據以政証實此二酚化合物在活性碳上之吸、脫附現象。此溶解度數據利用以密度為基礎之關係式(即 Chrastil, del Valle and Aguilera, Adachi and Lu, Gonzalez and Mendez-Santiago and Teja correlation)加以模擬。


    Sago palm (Metroxylon sagu) is agronomically important but relatively underutilized indigenous crop of Southeast Asia. In order to enhance and extend applications of sago starch, acetylation can be performed with relative ease to significantly improve the physicochemical and functional properties of the starch. Facile preparation of starch acetate was performed by reaction of starch with acetate anhydride and acetic acid using iodine as the catalyst and with the assistance of microwaves. The degree of substitution and physiochemical properties of starch acetate are greatly affected by the ratio of starch to acylation reagents, the choice of acylation reagents and the concentration of iodine as catalyst, while reaction time is not significant variable.
    In the processing of sago starch extraction from sago pith, the sago pith slurry during sedimentation is browning due to the oxidation of phenolic compounds by the polyphenol oxidase (PPO) enzyme. The recovery of catechin and epicatechin from sago waste effluent by adsorption onto activated carbon followed by supercritical CO2 desorption was demonstrated in this work. To study the kinetic and equilibria of adsorption, synthetic aqueous catechin and epicatechin solution was used instead of sago waste effluent. Adsorption using real sago waste effluent followed by supercritical CO2 extraction indicates that this method has potential application in recovery catechin and epicatechin in industrial scale. Ethanol as co-solvent was required to obtain high recovery of catechin from the activated carbon.

    Recommendation Letterii Qualification Letteriii 摘要iv Abstractv Acknowledgements vii Contentviii List of Tablexi List of Figurexii List of Publicationxv Chapter 1. Introduction1 1.1Introduction1 1.2.The objectives5 Chapter 2. Literature Review7 2.1Acetylation of sago starch8 2.2Recovery and solubility of phenolic compounds from waste effluent11 2.2.1. Recovery of phenolic compounds from waste effluent12 2.2.2. Solubility of phenolic compounds is SC-CO217 Chapter 3. Experimental Methods21 3.1Materials21 3.2Sago starch acetylation22 3.2.1. Synthesis of starch acetate22 3.2.2. Determination of the degree of substitution (DS)24 3.2.3. Fourier transform-infra red (FT-IR) analysis25 3.2.4. X-ray diffraction analysis25 3.2.5. Scanning electron microscopy (SEM) analysis25 3.2.6. Water absorbance index (WAI) and water solubility index (WSI)25 3.3Adsorption of phenolic compounds26 3.3.1.Characterizations of activated carbon26 3.3.2.Static adsorption experiments27 3.3.3.Calculations29 3.4Solubility measurements29 3.5Supercritical carbon dioxide desorption 31 Chapter 4. Result and Discussion33 4.1Sago starch acetylation33 4.1.1. The Effect of Process Variables on Degree of Substitution (DS)33 4.1.2. Fourier transform-infra red (FT-IR) analysis38 4.1.3. X-ray diffraction analysis40 4.1.4. Water absorption index (WAI) and water solubility index (WSI)41 4.1.5. Morphological properties43 4.2Solubility data of epicatechin and catechin in SC-CO244 4.2.1. Solubility Data46 4.2.2. Modelling of solubility data50 4.3Recovery of catechin and epicatechin from sago waste effluent53 4.3.1.Activated carbon characterization53 4.3.2.Adsorption isotherms 55 4.3.3.Adsorption kinetics61 4.3.4.Recover of phenolic compounds in sago waste effluent67 Chapter 5. Conclusion and Recommendation71 5.1Conclusion71 5.2Recommendation72 References73

    Abd-Aziz, S. (2002). Review - Sago starch and its utilisation. Jurnal of Bioscience and Bioengineering 94, 526-529.
    Adachi, Y., and Lu, B. C.-Y. (1983). Supercritical fluid extraction with carbon dioxide and ethylene. Fluid Phase Equilibria 14, 147-156.
    Adom, K. K., and Liu, R. H. (2002). Antioxidant activity of grains. Journal of Agricultural and Food Chemistry 50, 6182-6187.
    Aehle, E., Grandic, S. R., Ralainirina, R., Baltora-Rosset, S., Mesnard, F., Prouillet, C., Maziere, J., and Fliniaux, M. (2004). Development and evaluation of an enriched natural antioxidant preparation obtained from aqueous spinach (Spinacia oleracea) extracts by an adsorption procedure. Food Chemistry 86, 579-585.
    Agostini, S., Desjober, J.-M., and Pergent, G. (1998). Distribution of phenolic compounds in the seagrass Posidonia oceanica. Phytochemistry 48, 611-617.
    Ahmad, F. B., Williams, P. A., Doublier, J.-L., Durand, S., and Buleon, A. (1999). Physico-chemical characterisation of sago starch. Carbohydrate Polymers 38, 361-370.
    Ahmaruzzaman, M. (2008). Adsorption of phenolic compounds on low-cost adsorbents: A review. Advances in Colloid and Interface Science 143, 48-67.
    Anthonysamy, S. M., Saari, N. B., Muhammad, K., and Bakar, F. A. (2004). Browning of sago (Metroxylon sagu) pith slurry an influenced by holding time, pH and temperature. Journal of Food Biochemistry. 28, 91-99.
    AOAC (2000a). Official method of analysis In "Crude protein (Kjeldahl) ", Vol. 968.06.
    AOAC (2000b). Official methods of analysis. In "Proximate Analysis", Vol. 940.26.
    Balasundram, N., Sundram, K., and Samman, S. (2006). Analytical, Nutritional and Clinical Methods: Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry 99, 191-203.
    Baransi, K., Dubowski, Y., and Sabbah, I. (2012). Synergetic effect between photocatalytic degradation and adsorption processes on the removal of phenolic compounds from olive mill wastewater. Water Research 46.
    Bello-Perez, L. A., Agama-Acevedo, E., Zamudio-Flores, P. B., Mendez-Montealvo, G., and Rodriguez-Ambriz, S. L. (2010). Effect of low and high acetylation degree in the morphological, physicochemical and structural characteristics of barley starch. LWT - Food Science and Technology 43, 1434-1440.
    Berna, A., Chafer, A., Monton, J. B., and Subirats, S. (2001). High-pressure solubility data of system ethanol (1) + catechin (2) + CO2 (3). Journal of Supercritical Fluids 20, 157-162.
    Billmers, R. L., and Tessler, M. M. (1994). Method of preparing intermediate DS starch esters in aqueous solution. National Starch and Chemical Investment Holding Corporation, Wilmington, Del., United States.
    Biswas, A., Selling, G., Appell, M., Woods, K. K., Willett, J. L., and Buchanan, C. M. (2007). Iodine catalyzed esterification of cellulose using reduced levels of solvent. Carbohydrate Polymers 68, 555-560.
    Biswas, A., Shogren, R. L., Selling, G., Salch, J., Willett, J. L., and Buchanan, C. M. (2008). Rapid and enviromentally friendly preparation of starch esters. Carbohydrate Polymers 74, 137-141.
    Biswas, A., Shogren, R. L., and Willett, J. L. (2005). Solvent-Free Process to Esterify Polysaccharides. Biomacromolecules 6, 1843-1845.
    Blanchard, G., Maunaye, M., and Martin, G. (1984). Removal of heavy metals from waters by means of natural zeolites. Water Research 18, 1501-1507.
    Braeuer, A., Dowy, S., Leipertz, A., Schatz, R., and Schluecker, E. (2007). Injection of ethanol into supercritical CO2: determination of mole fraction and phase state using linear raman scattering. Optics Express 15, 8377-8382.
    Braida, I., Mattea, M., and Cardarelli, D. (2008). Extraction-adsorption-desorption process under supercritical condition as a method to concentrate antioxidants from natural sources. The Journal of Supercritical Fluids 45, 195-199.
    Brelid, P. L., and Simonson, R. (1999). Acetylation of solid wood using microwave heating. European Jurnal of Wood and Wood Products 57, 383-389.
    Cardona, J. A., Lee, J.-H., and Talcott, S. T. (2009). Color and polyphenolic stability in extracts produced from muscadine grape (Vitis rotundifolia) pomace. Journal of Agricultural and Food Chemistry 57, 8421-8425.
    Chafer, A., Berna, A., Monton, J. B., and Munoz, R. (2002). High-pressure solubility data of system ethanol (1) + epicatechin (2) + CO2 (3). Journal of Supercritical Fluids 24, 103-109.
    Chafer, A., Fornari, T., Berna, A., and Stateva, R. P. (2004). Solubility of quercetin in supercritical CO2+ethanol as a modifier: measurements and thermodynamic modelling. Journal of Supercritical Fluids 32, 89-96.
    Charinpanitkul, T., and Tanthapanichakoon, W. (2011). Regeneration of activated carbons saturated with pyridine or phenol using supercritical water oxidation method enhanced with hydrogen peroxide. Journal of Industrial and Engineering Chemistry 17, 570-574.
    Chassagne, D., Guilloux-Benatier, M., Alexandre, H., and Voilley, A. (2005). Sorption of wine volatile phenols by yeast lees. Food Chemistry 91, 39-44.
    Chen, L., Li, X., and Guo, S. (2007). Acetylated starch-based biodegradable materials with potential biomedical applications as drug delivery systems. Current Applied Physics 7S1, e90-e93.
    Chi, H., Xu, K., Wu, X., Chen, Q., Xue, D., Song, C., and al, e. (2008). Effect of acetylation on the properties of corn starch. Food Chemistry 106, 923-928.
    Chihara, K., Oomori, K., Oono, T., and Mochizuki, Y. (1997). Supercritical CO2 regeneration of activated carbon loaded with organic adsorbates. Water Science & Technology 35, 261-268.
    Choy, K. K. H., Porter, J. F., and McKay, G. (2000). Langmuir isotherm models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon. Journal of Chemical and Engineering Data 45, 575-584.
    Chrastil, J. (1982). Solubility of solids and liquids in supercritical gases. Journal of Physical Chemistry 86, 3016-3021.
    Colonna, P., Buleon, A., and Mercier, C. (1981). Pisum sativum and Vicia faba carbohydrates: structural studies of starches. Journal of Food Science 46, 88-93.
    Cotea, V. V., Luchian, C. E., Bilba, N., and Niculaua, M. (2012). Mesoporous silica SBA-15, a new adsorbent for bioactive polyphenols from red wine. Analytica Chimica Acta 732, 180-185.
    Dabrowski, A., Podkoscielny, P., Hubicki, Z., and Barczak, M. (2005). Adsorption of phenolic compounds by activated carbon - a critical review. Chemosphere 58, 1049-1070.
    Danielski, L., Bruner, G., Schwanke, C., Zetzl, C., Hense, H., and Donoso, J. P. M. (2008). Deterpenation of mandarin (Citrus reticulata) peel oils by means of countercurrent multistage extraction and adsorption/desorption with supercritical CO2. The Journal of Supercritical Fluids 44, 315-324.
    Day, C.-Y., Chang, C. J., and Chen, C.-Y. (1996). Phase equilibrium of ethanol + CO2 and acetone + CO2 at elevated pressures. Journal of Chemical and Engineering Data 41, 839-843.
    del Valle, J. M., and Aguilera, J. M. (1988). An improved equation for predicting the solubility of vegetable oils in supercritical CO2. Industrial and Engineering Chemistry Research 27, 1551-1553.
    Ding, Y., Jing, D., Gong, H., Zhou, L., and Yang, X. (2012). Biosorption of aquatic cadmium (II) by unmodified rice straw. Bioresource Technology 114, 20-25.
    Diop, C. I. K., Li, H. L., Xie, B. J., and Shi, J. (2011). Effect of acetic acid/acetic anhydride ratios on the properties of corn starch acetates. Food Chemistry 126, 1662-1669.
    Duarte, A. R. C., Santiago, S., de Sousa, H. C., and Duarte , C. M. M. (2005). Solubility of acetazolamide in supercritical carbon dioxide in the presence of ethanol as a cosolvent. Journal of Chemical and Engineering Data 50, 216-220.
    Ellen, R. (2004). Processing Metroxylon sagu Rottbell (Arecaceae) as a technological complex: A case study from South Central Seram, Indonesia. Economic Botany 58, 601-625.
    Elomaa, M., Asplund, T., Soininen, P., Laatikainen, R., Peltonen, S., Hyvarinen, S., and Urtti, A. (2004). Determination of the degree of substitution of acetylated starch by hydrolysis, 1H NMR and TGA/IR. Carbohydrate Polymers 57, 261-267.
    Epstein, H. (2009). Cosmeceuticals and polyphenols. Clinics in Dermatology 27, 475-478.
    Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y.-H., Indraswati, N., and Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials 162, 616-645.
    Feuer, B. I., and Heights, B. (1998). Method of making starch acetate using an acid catalyst. (U. P. office, ed.), US.
    Garg, S., and Jana, A. K. (2011). Characterization and evaluation of acylated starch with different acyl groups and degrees of substitution. Carbohydrate Polymers 83, 1623-1630.
    Garlapati, C., and Madras, G. (2008a). Solubilities of dodecanoic and tetradecanoic acids in supercritical CO2 with and without entrainers. Journal of Chemical and Engineering Data 53, 2637-2641.
    Garlapati, C., and Madras, G. (2008b). Solubilities of hexadecanoic and octadecanoic acids in supercritical CO2 with and without Cosolvents. Journal of Chemical and Engineering Data 53, 2913-2917.
    Geng, X., Ren, P., Pi, G., Shi, R., Yuan, Z., and Wang, C. (2009). High selective purification of flavonoids from natural plants based on polymeric adsorbent with hydrogen-bonding interaction. Journal of Chromatography A 1216, 8331-8338.
    Giles, C. H., D'Silva, A. P., and Easton, I. A. (1974a). A general treatment and classification of the solute adsorption isotherm, II. Journal of Colloid and Interface Science 47, 766-778.
    Giles, C. H., Smith, D., and Huitson, A. (1974b). A general treatment and classification of the solute adsorption. I. Journal of Colloid and Interface Science 47, 755-765.
    Gonzalez, J. C., Vieytes, M. R., Botana, A. M., Vieites, J. M., and Botana, L. M. (2001). Modified mass action law-based model to correlate the solubility of solids and liquids in entrained supercritical carbon dioxide. Journal of Chromatography A 910, 119.
    Gorshkova, T. A., Salnikov, V. V., Pogodina, N. M., Chemikosova, S. B., Yablokova, E. V., Ulanov, A. V., Ageeva, M. V., Van Dam, J. E. G., and Lozovaya, V. V. (2000). Composition and distribution of cell wall phenolic compounds in flax (Linum usitatissimum L.) stem tissues. Annals of Botany 85, 477-486.
    Huang, J., Schols, H. A., Klaver, R., Jin, Z., and Voragen, A. G. J. (2007). Acetyl substitution pattern of amylose and amylopectin populations in cowpea starch modified with acetic anhydride and vinyl acetate. Carbohydrate Polymers 67, 542-550.
    Huang, Z., Lu, W. D., Kawi, S., and Chiew, Y. C. (2004). Solubility of aspirin in supercritical carbon dioxide with and without acetone. Journal of Chemical and Engineering Data 49, 1323-1327.
    Hutzler, P., Rischbach, R., Heller, W., Jungblut, T. P., Reuber, S., Schmitz, R., Veit, M., Weissenbock, G., and Schnitzler, J. (1998). Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. Journal of Experimental Botany 49, 953-965.
    Joung, S. N., Yoo, C. W., Shin, H. Y., Kim, S. Y., Yoo, K.-P., Lee, C. S., and Huh, W. S. (2001). Measurements and correlation of high-pressure VLE of binary CO2-alcohol systems (methanol, ethanol, 2-methoxyethanol and 2-ethoxyethanol). Fluid Phase Equilibria 185, 219-230.
    Jung, H.-J. G. (2003). Maize stem tissues: ferulate deposition in developing internode cell walls. Phytochemistry 63, 543-549.
    Koroskenyi, B., and McCarty, S. P. (2002). Microwave-assisted solvent-free or aqueous-based synthesis of biodegradable polymers. Journal of Polymers and the Environment 10, 93-104.
    Kosasih, A. N., Febrianto, J., Sunarso, J., Ju, Y.-H., Indraswati, N., and Ismadji, S. (2010). Sequestering of Cu(II) from aqueous solution using cassava peel (Manihot esculenta). Journal of Hazardous Materials 180, 366-374.
    Kurniawan, A., and Ismadji, S. (2011). Potential utilization of Jatropha curcas L press cake residue as new precursor for activated carbon preparation: Application in methylene blue removal from aqueous solution. Journal of Taiwan Institute of Chemical Engineering 42, 826-836.
    Kurniawan, A., Sutiono, H., Indraswati, N., and Ismadji, S. (2012). Removal basic dyes in binary system by adsorption using rarasaponin-bentonite: Revisited extended Langmuir model. Chemical Engineering Journal 189-190, 264-274.
    Kurniawan, A., Sutiono, H., Ju, Y.-H., Soetaredjo, F. E., Ayucitra, A., Yudha, A., and Ismadji, S. (2011). Utilisation of rarasaponin natural surfactant for organo-bentonite preparation: Application for methylene blue removal from aqueous effluent. Microporous & Mesoporous Materials 142, 184-193.
    Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe Kungliga Svenska Vetenskapsakademiens. Handlingar 24, 1-39.
    Lam, T. B. T., Iiyama, K., and Stone, B. A. (1990). Distribution of fress and combined phenolic acids in wheat internodes. Phytochemistry 29, 429-433.
    Li, J., Zhang, L. P., Peng, F., Bian, J., Yuan, T. Q., Xu, F., and al, e. (2009). Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules 14, 3551-3566.
    Liebert, T., Kulicke, W. M., and Heinze, T. (2008). Novel approach towards hydrolytically stable starch acetates for physiological applications. Reactive & Functional Polymers 68, 1-11.
    Macnaughton, S. J., and Foster, N. R. (1995). Supercritical adsorption and desorption behavior of DDT on activated carbon using carbon dioxide. Industrial & Engineering Chemistry Research 34, 275-282.
    Madras, G., Erkey, C., and Akgerman, A. (1993). Supercritical fluid regeneration of activated carbon loaded with heavy molecular weight organics Industrial & Engineering Chemistry Research 32, 1163-1168.
    Madras, G., Thibaud, C., Erkey, C., and Akgerman, A. (1994). Modeling of supercritical extraction of organics from solid matrices. AIChE Journal 40, 777-785.
    Mendez-Santiago, J., and Teja, A. S. (1999). The solubility of solids in supercritical fluids. Fluid Phase Equilibria 158-160, 501-510.
    Michailof, C., Stavropoulos, G. G., and Panayiotou, C. (2008). Enhanced adsorption of phenolic compounds, commonly encountered in olive mill wastewaters, on olive husk derived activated carbons. Bioresource Technology 99, 6400-6408.
    Modell, M., Robey, R. J., Krukonis, V. J., de Filippi, R. P., and Oestreich, D. (1979). Supercritical fluid regeneration of activated carbon. In "87th AIChE Meeting", Boston, MA.
    Moure, A., Cruz, J. M., Franco, D., Dominguez, J. M., Sineiro, J., Dominguez, H., Nunez, M. J., and Parajo, J. C. (2001). Natural antioxidants from residual sources. Food Chemistry 72, 145-171.
    Muhamad, H., Doan, H., and Lohi, A. (2010). Batch and continuous fixed-bed column biosorption of Cd2+ and Cu2+. Chemical Engineering Journal 158, 369-377.
    Murga, R., Sanz, M. T., Beltran, S., and Cabezas, J. L. (2003). Solubility of three hydroxycinnamic acids in supercritical carbon dioxide. Journal of Supercritical Fluids 27, 239-245.
    Nunes, A. V. M., Matias, A. A., Nunes da Ponte, M., and Duarte, C. M. M. (2007). Quaternary phase equilibria for scCO2 + biophenolic compound + water + ethanol. Journal of Chemical and Engineering Data 52, 244-247.
    Pei-Lang, A. T., Karim, A. A., and Manan, D. M. A. (2008). Physicochemical properties of starch in sago palms (Metroxylon sagu) at different growth stages. Starch 60, 408-416.
    Pei-Lang, A. T., Mohamed, A. M. D., and Karim, A. A. (2006). Sago starch and composition of associated components in palms of different growth stages. Carbohydrate Polymers 63, 283-286.
    Plazinski, W., Rudzinski, W., and Plazinska, A. (2009). Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Advances in Colloid and Interface Science 152, 2-13.
    Pourali, O., Asghari, F. S., and Yoshida, H. (2010). Production of phenolic compounds from rice bran biomass under subcritical water conditions. Chemical Engineering Journal 160, 259-266.
    Qi, J., Guo, Y., and Xu, H. (2004). Adsorption of phenolic compounds on micro- and mesoporous rice husk-based active carbons. Materials Chemistry and Physics 87, 96-101.
    Rechner, A. R., Kuhnle, G., Bremner, P., Hubbard, G. P., Moore, K. P., and Rice-Evans, C. A. (2002). The metabolic fate of dietary polyphenols in humans. Free Radical Biology & Medicine 33, 220-235.
    Rechner, A. R., Smith, M. A., Kuhnle, G., Gibson, G. R., Debnam, E. S., Srai, S. K. S., Moore, K. P., and Rice-Evans, C. A. (2004). Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radical Biology & Medicine 36, 212-225.
    Reverchon, E. (1997). Supercritical desorption of limonene and linalool from silica gel: experiments and modelling. Chemical Engineering Science 52, 1019-1027.
    Reverchon, E., and Iacuzio, G. (1997). Supercritical desorption of bergamot peel oil from silica gel - Experiments and mathematical modelling. Chemical Engineering Science 52, 3553-3559.
    Richard, D., Nunez, M. d. L. D., and Schweich, D. (2009). Adsorption of complex phenolic compounds on active charcoal: Adsorption capacity and isotherms. Chemical Engineering Journal 148, 1-7.
    Rocha, C. G., Zaia, D. A. M., Alfaya, R. V. d. S., and Alfaya, A. A. d., S. (2009). Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents. Journal of Hazardus Materials 166, 383-388.
    Saldana, M. D. A., Tomberli, B., Guigard, S. E., Goldman, S., Gray, C. G., and Temelli, F. (2007). Determination of vapor pressure and solubility correlation of phenolic compounds in supercritical CO2. Journal of Supercritical Fluids 40, 7-19.
    Salgin, U., Yildiz, N., Koroglu, F., and Calimli (2007). A parametric study of phenolic compounds desorption performance from organobentonite by supercritical fluids. The Journal of Supercritical Fluids 39, 296-303.
    Schmitt, W. J., and Reid, R. C. (1986). The use of entrainers in modifying the solubility of phenanthrene and benzoic acid in supercritical carbon dioxide and ethane Fluid Phase Equilibria 32, 77-99.
    Scordino, M., Mauro, A. D., Passerini, A., and Maccarone, E. (2003). Adsorption of flavonoids on resins: Herperidin. Journal of Agricultural and Food Chemistry 51, 6998-7004.
    Scordino, M., Mauro, A. D., Passerini, A., and Maccarone, E. (2004). Adsorption of flavonoids on resins: Cyanidin 3-Glucoside. Journal of Agricultural and Food Chemistry 52, 1965-1972.
    Selga, A., and Torres, J. L. (2005). Efficient preparation of catechin thio conjugates by one step extraction/depolymerization of pine (Pinus pinaster) bark procyanidins. Journal of Agricultural and Food Chemistry 53, 7760-7765.
    Shogren, R. L., and Biswas, A. (2006). Preparation of water-soluble and water-swellable starch acetates using microwave heating. Carbohydrate Polymers 64, 16-21.
    Singh, A. V., Nath, L. K., and Manisha, G. (2011). Synthesis and characterization of highly acetylated sago starch. Starch 63, 523-527.
    Singh, N., Chawla, D., and Singh, J. (2004). Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch. Food Chemistry 86, 601-608.
    Skerget, M., Knez, Z., and Knez-Hrncic, M. (2011). Solubility of solids in sub- and supercritical fluids: A review. Journal of Chemical and Engineering Data 56, 694-719.
    Soetaredjo, F. E., Ismadji, S., and Ju, Y.-H. (2013a). Measurement and modeling of epicatechin solubility in supercritical carbon dioxide fluid. Fluid Phase Equilibria 340, 7-10.
    Soetaredjo, F. E., Ismadji, S., Liauw, M. J., and Ju, Y.-H. (2013b). Catechin sublimation pressure and solubility in supercritical carbon dioxide. Fluid Phase Equilibria Submitted.
    Soetaredjo, F. E., Kurniawan, A., Ong, L. K., and Ismadji, S. (2013c). Incorporation of selectivity factor in modeling binary component adsorption isotherms for heavy metals-biomass system. Chemical Engineering Journal 219, 137-148.
    Song, Q., Zhu, J., Wan, J., and Cao, X. (2010). Measurement and modeling of epigallocatechin gallate solubility in supercritical carbon dioxide fluid with ethanol cosolvent. Journal of Chemical and Engineering Data 55, 3946-3951.
    Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., and Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutation Research 579, 200-213.
    Soto, M. L., Moure, A., Dominguez, H., and Parajo, J. C. (2008). Charcoal adsorption of phenolic compounds present in distilled grape pomace. Journal of Food Engineering 84, 156-63.
    Soto, M. L., Moure, A., Dominguez, H., and Parajo, J. C. (2011). Recovery, concentration and purification of phenolic compounds by adsorption: A review. Journal of Food Engineering 105, 1-27.
    Spagna, G., Pifferi, P. G., Rangoni, C., Mattivi, F., Nicolini, G., and Palmonari, R. (1996). The stabilisation of white wines by adsorption of phenolic compounds on chitin and chitosan. Food Research International 29, 241-248.
    Sparks, D. L., Estevez, L. A., Hernandez, R., Barlow, K., and French, T. (2008). Solubility of nonanoic (pelargonic) acid in supercritical carbon dioxide. Journal of Chemical and Engineering Data 53, 407-410.
    Srinivasan, M. P., Smith, D., and McCoy, B. J. (1991). Ethyl acetate desorption from activated carbon with supercritical carbon dioxide: effect of initial loading. Chemical Engineering Science 46, 371-374.
    Srinivasan, M. P., Smith, J. M., and McCoy, B. J. (1990). Supercritical fluid desorption from activated carbon. Chemical Engineering Science 45, 1885-1895.
    Sunarso, J., and Ismadji, S. (2009). Decontamination of hazardous substances from solid matrices and liquids using supercritical fluid extraction: A review. Journal of Hazardous Materials 161, 1-20.
    Suzuki, K., and Sue, H. (1990). Isothermal vapor-liquid equilibrium data for binary systems at high pressure: Carbon dioxide-methanol, carbon dioxide-ethanol, carbon dioxide-1-propanol, methane-ethanol, methane-1-propanol, ethane-ethanol, and ethane-1-propanol systems. Journal of Chemical and Engineering Data 35, 63-66.
    Tan, C.-S., and Liou, D.-C. (1988). Desorption of ethyl acetate from activated carbon by supercritical carbon dioxide. Industrial & Engineering Chemistry Research 27, 988-991.
    Tan, C.-S., and Liou, D.-C. (1989a). Modeling of desorption at supercritical conditions. AIChE journal 35, 1029-1031.
    Tan, C.-S., and Liou, D.-C. (1989b). Supercritical regeneration of activated carbon loaded with benzene and toluene. Industrial & Engineering Chemistry Research 28, 1222-1226.
    Tessler, M. M., and Billmers, R. L. (1996). Preparation of starch esters. Journal of Polymers and the Environment 4, 85-89.
    Tester, R. F., Karkalas, J., and Qi, X. (2004). Starch-composition, fine structure and architecture. Journal of Cereal Science 39, 151-165.
    Tomasko, D. L., and Hay, K. J. (1993). Pilot scale study and design of a granular activated carbon regeneration process using supercritical fluids. Enviromental Progress 12, 208-217.
    Tomasko, D. L., Macnaughton, S. J., Foster, N. R., and Eckert, C. A. (1995). Removal of pollutants from solid matrices using supercritical fluids. Separation Science and Technology 30, 1901-1915.
    Vitaglione, P., Napolitano, A., and Fogliano, V. (2008). Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends in Food Science & Technology 19, 451-463.
    Wang, L.-H., and Cheng, Y.-Y. (2005). Solubility of puerarin in ethanol + Supercritical carbon dioxide. Journal of Chemical and Engineering Data 50, 1747-1749.
    Xu, Y. X., Dzenis, Y., and Hanna, M. A. (2005). Water solubility, thermal characteristics and biodegradability of extruded starch acetate foams. Industrial Crops and An International Journal 21, 361-368.
    Yu, L., and Zhou, K. (2004). Antioxidant properties of bran extracts from "platte" wheat grown at different locations. Food Chemistry 90, 311-316.
    Zeng, S., Wang, S. J., Xiao, M., Hans, D. M., and Meng, Y. (2011). Preparation and properties of biodegradable blend containing poly (propylene carbonate) and starch acetate with different degree of substitution. Carbohydrate Polymers.

    QR CODE